
European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026   1 

PSFP in TSN Networks: Insights into Some Practical Limitations 

Matheus Ladeira1, Marc Boyer2, Nicolas Navet3 and Léo Seguin1 

1Realtime-at-Work, Nancy, France 

matheus.ladeira@realtimeatwork.com, leo.seguin@realtimeatwork.com 

2DTIS, Onera, Université de Toulouse, 31000, Toulouse, France 

marc.boyer@onera.fr 

3University of Luxembourg & Cognifyer, Esch-sur-Alzette, Luxembourg 

nicolas.navet@cognifyer.ai  

 
ABSTRACT 

Per-Stream Filtering and Policing (PSFP), standardized in IEEE 

802.1Qci, is a mechanism for providing fault containment in 

Time-Sensitive Networking (TSN) networks. This paper 

examines limitations of PSFP, showing that the fault-

containment can be insufficient. In particular, the Flow Meter 

inside PSFP measures traffic in Service Data Unit (SDU) bytes 

– i.e., from the MAC destination address through the Frame 

Check Sequence. However, common Ethernet shapers such as 

the Credit-Based Shaper (CBS) regulate traffic based on the full 

'on-wire' packet length, which includes the SDU plus the 8-byte 

preamble and the 12-byte inter-frame gap. This results in a 20-

byte per-frame gap that increases admissible rates: with 

minimum-size packets, a talker can exceed its contractual 

bandwidth by up to 30%. In addition to the contract not being 

enforced, an independent stream  might be penalized due to a 

queue build up. Through simulations with RTaW-Pegase 

software and hardware-in-the-loop experiments on a TSN 

testbed, we quantify these effects and evaluate configuration-

level mitigations. We then discuss possible evolutions of the 

standard, including overhead-aware byte counting, which could 

address these gaps.  

1. INTRODUCTION 

Time‑Sensitive Networking (TSN) has emerged as the de‑facto 

toolbox for mixed control, audio‑video and best‑effort traffic on 

a shared Ethernet backbone. Standards such as 802.1Qbv 

(Time‑Aware Shaper – TAS) and 802.1Qav (Credit‑Based 

Shaper – CBS) provide latency and bandwidth guarantees. In 

this landscape, Per‑Stream Filtering and Policing (PSFP) 

defined by IEEE 802.1Qci is often promoted as a “safety net” 

that converts a well‑engineered TSN configuration into a 

fault‑free network: any stream that violates the contract is 

assumed to be dropped before it can harm others. 

PSFP doesn't actually prevent faults: instead, it limits their 

impact using traffic filters that discard individual packets or that 

entirely block streams. As we will show, those mechanisms, in 

some cases, are not 100% effective. One mechanism is 

especially problematic: the byte-count mismatch [1] between 

the PSFP’s Flow Meter (which considers only the bytes between 

the MAC addresses and the Frame Check Sequence) and the 

idleSlope parameter for a CBS (which considers the full on-wire 

packet length including the Ethernet preamble and the Inter 

Frame Gap). The 20‑byte gap per frame especially affects 

streams that use small packets, potentially inflating their 

throughput by as much as 30%. This issue is explored in detail 

in Section 3.  

The purpose of this article is to provide an analysis of this 

limitation, showing a practical example of how it can present 

itself in a real network. Then, we outline possible solutions to 

avoid the issue, ranging from parameter tuning to possible 

standard amendments. 

The remainder of the paper is organized as follows: Section 2 

recaps relevant TSN concepts, notably the PSFP mechanism. 

Section 3 explains the byte-counting mismatch. Section 4 

presents a practical example of how the mismatch may cause 

issues, both with a numerical simulation using RTaW-Pegase 

and with an implementation on a hardware test-bench. Section 5 

presents mitigation strategies that can be already adopted in the 

current situation. Section 6 discusses possible changes to the 

current standard and products’ implementation that could 

mitigate the issue. Then, Section 7 concludes the article, with 

perspectives for future research on the topic. 

2. BACKGROUND 

2.1. Ethernet Packet, SDU and MSDU 

An Ethernet Packet is composed of several parts, which are 

depicted in Figure 1. The preamble consists of 8 bytes, the 

Interpacket Gap (IPG) consists of (at least) 12 bytes, and the 

Service Data Unit (SDU) makes up the Ethernet Frame. The 

whole Ethernet packet overhead with respect to the SDU is 20 

bytes. 
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Figure 1: Structure of an Ethernet packet. The SDU spans from 

the MAC destination address to the Frame Check Sequence 

(FCS), excluding the 8-byte preamble and 12-byte inter-packet 

gap (IPG), which make up 20-byte media overhead sent on the 

wire but not accounted for by the PSFP Flow Meter. 

The SDU itself is composed of several parts: 6 bytes of a 

destination MAC address, another 6 bytes for a source MAC 

address, optional 4 bytes of a Q-Tag in case VLANs are used, 2 

bytes encoding the type of payload (EthType), the payload itself 

(also known as the MAC-layer SDU, or MSDU, which must be 

at least 46 bytes long and at most 1500 bytes long, although 

frames with a Q-Tag present can have a payload as short as 42 

bytes [IEEE 802.1Q, Annex G]), and finally 4 bytes for a Frame 

Check Sequence (FCS). Therefore, the overhead of the SDU 

with respect to the MSDU is 18 bytes (or 22, if a Q-Tag is 

present). The SDU’s minimum size is 64 bytes whether a Q-Tag 

is present or not, and its maximum size is 1518 bytes without a 

Q-Tag, and 1522 with it. 

To calculate the full on-wire length of a frame of MSDU size of 

𝑁, in bytes: 

1. First, compute the SDU length 𝐿 : 𝐿 = 𝑁 + 12  (MAC 

destination + MAC source) + 2 (EthType) + 4 (FCS) + 4 

(Q-Tag, optional) + padding (if necessary, so that 𝐿 ≥ 64 

bytes). In other words, 𝐿 =  𝑁 +  22  bytes +  possible 

padding, considering there is a Q-Tag since we are working 

with VLANs. 

2. Then, add the 8-byte preamble and 12-byte IPG, so that the 

full Ethernet packet length on the wire = 𝐿 + 20 bytes. 

2.2. TSN Tool‑Chain Recap 

Time-Sensitive Networking (TSN) is built as an extension to 

standard Ethernet (IEEE 802.3) via a sequence of IEEE 802.1Q 

amendments that, when combined, guarantee bounded latency, 

jitter, and fault containment. Figure 2 illustrates how a packet is 

processed through a TSN-enabled bridge or switch [2]. 

 

Figure 2: Processing steps in a TSN-enabled bridge. Each 

incoming packet traverses a sequence of TSN functions before 

reaching the output port. 

In TSN, data flows are called “streams”, and must have a unique 

identifier. This identifier is used for filtering, metering, etc. 

2.2.1. 802.1Qbv – Time-Aware Shaper (TAS) 

The Time-Aware Shaper (TAS) enforces a time-division 

multiple access (TDMA) schedule by gating traffic open or 

closed according to a Gate Control List (GCL) running on a 

synchronized time base (IEEE 802.1AS). It does not meter bytes 

itself. Instead, it ensures that packets of a given class can only 

be transmitted during their assigned time window, as defined by 

the periodic CycleTime and each GCL entry’s GateOpenInterval 

and GateCloseInterval. To prevent interference, when the TAS 

gate assigned to a high-priority queue is open, the gates for other 

queues are typically closed, a configuration known as “exclusive 

gating”. 

Once all GCLs have been configured in an adequate way, TAS 

guarantees real-time latency and bounded jitter to each frame. 

Nevertheless, TAS configuration is a hard problem, especially 

when the load increases [3] [4]. 

Except for very specific cases, it is, to the best of our knowledge, 

common practice to assign exclusive time windows to only 10 

to 30% of the link capacity  to TAS.  

Moreover, to minimize end-to-end latencies, the use of TAS 

requires a synchronization between the applications and the 

network. Indeed, since some time intervals are devoted to 

frames, the frames must be ready when the window opens. This 

implies that the schedule of the tasks and the network must be 

co-designed. This use-case – supporting data flows with strict 

latency and jitter requirements – is one of the primary 

applications of TAS. 

2.2.2. Qav – Credit-Based Shaper (CBS) 

The Credit-Based Shaper (CBS) was developed for Audio-

Video Bridging (AVB) and provides per-class bandwidth 

reservation and bounded delays. Each output queue can be 

managed by a CBS shaper. Its most important shaping parameter 

is the idleSlope, which specifies the long-term transmission rate 

in bytes per second. The aim of CBS is to do as if the queue was 

connected to a link whose throughput is equal to the idleSlope 

(when we consider a sufficiently large time window). CBS 

guarantees a minimal service for the shaped queue while 

limiting its burstiness, leaving room for frames in lower priority 

queues. This is done using one single counter per queue, the 

credit. Note that some deviations between CBS and an ideal 

isolated link with configured throughput exist, but this is beyond 

the scope of this article [5]. 

Whenever a frame is eligible for transmission, CBS checks that 

the credit bucket is not negative. If this is the case, the frame 

transmission starts immediately, and credit is progressively 

reduced during the transmission by an amount proportional to 

the frame’s full on-wire length (SDU + 20), possibly reaching 

negative values.  

When the traffic class is not transmitting, if the credit is negative 

or if there are frames waiting in the queue to be sent, the credit 

amount increases at a rate defined by the idleSlope. The credit 
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will stop increasing when it reaches zero if there are no frames 

waiting in the queue, but it may become larger than zero if there 

is a frame in the queue that needs to wait for the end of 

transmission of a frame from another traffic class. Because CBS 

considers the full Ethernet-packet size per frame, the long-term 

transmission rate approaches the one a real link would have if 

its transmission rate were equivalent to the idleSlope. 

To guarantee bounded delays and prevent buffer overflows 

during traffic bursts, the idleSlope of a CBS-shaped queue must 

be strictly greater than the average throughput of the traffic class 

it shapes  [7]. It must be set so that, over time, the shaper 

accumulates enough credit to transmit possible bursts without 

violating delay constraints. 

For example, to illustrate this behavior, in Figure 3 we represent 

a non-CBS frame (depicted in green) that is being transmitted 

when a burst of CBS-shaped messages (depicted in blue) arrives 

in the sending queue. The credit, represented as the red line, 

which was zero in the beginning, starts increasing in the moment 

the CBS-shaped burst arrives, with a rate defined by the 

idleSlope, until the non-CBS frame is done and the first of the 

CBS frames starts its transmission. From that moment onward, 

the CBS credit decreases at a rate equal to the link's transmission 

rate minus the idleSlope. Once the frame completes its 

transmission, the credit starts increasing again at a rate equal to 

the idleSlope. Although CBS-shaped frames are already waiting 

in the queue, they cannot be sent before the amount of CBS 

credits reaches a non-negative value. 

 

Figure 3: Evolution of CBS credit during burst arrival. 

CBS provides real time guarantees to data flows, and there are 

several efficient methods to configure and analyze CBS flows in 

TSN networks [6] [7]. CBS is particularly well suited for bursty 

or asynchronous traffic, without strong jitter constraints. 

Note that when TAS and CBS are used together on the same 

output port, CBS is paused while TAS is active to ensure priority 

traffic isolation. To maintain the intended average bandwidth, 

the CBS idleSlope must be scaled proportionally, using the 

formula 

𝑖𝑑𝑙𝑒𝑆𝑙𝑜𝑝𝑒 = 𝑜𝑝𝑒𝑟𝐼𝑑𝑙𝑒𝑆𝑙𝑜𝑝𝑒 ×  
𝑂𝑝𝑒𝑟𝐶𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒

𝐺𝑎𝑡𝑒𝑂𝑝𝑒𝑛𝑇𝑖𝑚𝑒
 

where OperCycleTime is the TAS GCL period, and 

GateOpenTime is the total amount of time that the CBS gate is 

open during this period. 

2.2.3. 802.1Qcr – Asynchronous Traffic Shaping (ATS) 

ATS is introduced by IEEE 802.1Qcr (years after TAS and 

CBS) whose goal is to give every hop along a path the same tight 

per-flow traffic profile without relying on a global time schedule 

or on strict credit accounting. Unlike TAS, it needs no 802.1AS 

time-synchronisation and unlike the classic Credit-Based 

Shaper, it never lets “positive credit” build up, so burst cascades 

cannot occur. In addition, unlike CBS, which applies shaping 

per traffic class, ATS provides native per-flow shaping. 

2.3. PSFP Fundamentals 

Per-Stream Filtering and Policing (PSFP) is a per-stream 

“firewall” that contains misbehaving talkers by dropping any 

packets that exceed traffic contracts and, in stricter 

configurations, even block entire streams that fail filtering 

conditions. PSFP comprises three sequential stages: Stream 

Filter, Gate Filter and Flow Meter. These stages are represented 

in Figure 4. 

 

Figure 4: Illustration of filtering steps in PSFP.  

2.3.1. Stream Filter (IEEE 802.1Qci § 8.6.5.1): 

The Stream Filter is mainly a selection and orientation stage, 

augmented with a few filtering and monitoring mechanisms. An 

incoming frame passes through a list of filter-matching tests and 

gets processed by the first filter that fits. 

The matching is based on the Stream Handle (defined by stream 

identification methods that may use source and destination 

MAC addresses, VLAN, IP and other parameters, in 

combination with the input port) and/or the priority of the frame. 

Once selected, the filter tests if the frame size exceeds its 

maxSDUSize parameter. Such frames are dropped. If the packet 

matches the parameters of the filter and respects the 

maxSDUsize, it proceeds to a Gate Filter defined by this Stream 

Filter. If the frame is not dropped by the Gate Filter, it then 

proceeds to the Flow Meter defined by this same Stream Filter.  

If the packet does not match any filter entry in the list, it is 

forwarded. To avoid that behavior and drop all unknown frames, 

the user can define a filter entry at the end of the Stream Filter 

list that matches any incoming frame using wildcards for the 

stream handle and the priority fields, pointing them to a 

permanently closed Gate Filter. 

2.3.2. Gate Filter (IEEE 802.1Qci § 8.6.5.2): 

Each Gate Filter holds a Stream Control List (SCL): a time-

indexed gate state (open/close). If the gate is “closed” at packet 

arrival, the packet is dropped. If “open,” the packet proceeds to 

the Flow Meter assigned by the Stream Filter. 
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This gate filter can be used to enforce TAS time-window 

policies: if clocks of the upstream TAS switch and the local 

switch are synchronized (which is a common requirement for 

TAS correct behavior), the SCL can be built to ensure that 

packets arriving outside their assigned time window are 

discarded, therefore avoiding errors to propagate across the 

network. 

2.3.3. Flow Meter (IEEE 802.1Qci § 8.6.5.3): 

Each Flow Meter implements either a single or a double token-

bucket meter, depending on the dropOnYellow boolean 

parameter (if true, then a single token-bucket is implemented; 

otherwise, two are implemented). The token-bucket that is 

always present has two key parameters: 

1. Committed Information Rate (CIR), expressed in SDU 

bytes per time interval, defining the rate at which the token 

bucket is filled. 

2. Committed Burst Size (CB-Size), also in SDU bytes, 

defining the maximum number of tokens that can exist in 

the token-bucket. Note that, in the IEEE standard, the CB-

Size and the Credit-Based Shaper are both referred to as 

“CBS”. However, to avoid ambiguity, we deliberately 

chose to use a different acronym, CB-Size, for the 

Committed Burst Size throughout this article. 

If dropOnYellow is false, then two similar parameters are set: 

the Excess Information Rate (EIR), analogous to the CIR, and 

the Excess Burst Size, analogous to the CB-Size. 

A frame can pass a flow meter by consuming one token per byte. 

If dropOnYellow is false, if the first token-bucket does not have 

enough tokens for the size of the frame candidate, the frame is 

forwarded to the second token-bucket; then, if the second token-

bucket does not have enough tokens, the frame is dropped. 

However, if dropOnYellow is true, if the first token-bucket does 

not have enough tokens for the size of the frame candidate, it is 

immediately dropped. 

Due to the token bucket mechanism that is similar to the one 

used in CBSs, Flow Meters can be used to enforce CBS 

contracts and avoid errors or misconfigurations. Nonetheless, 

their token bucket mechanisms present important differences 

that result in the impossibility of perfectly filtering CBS non-

conformities: PSFP’s Flow Meter token bucket charges only the 

SDU length 𝐿 – that is, 𝑁 (MSDU) plus 22 bytes (MAC dest + 

MAC src +  QTag + EthType + FCS, plus any padding). It does 

not include the 8-byte preamble or 12-byte IPG. Thus, while 

CBS accounts (SDU + 20) bytes per frame, PSFP only “sees” 

SDU bytes. Over many small packets, the 20-byte per-packet 

discrepancy accumulates and may result in the flow exceeding 

its contractual limit without it being detected by PSFP 

(Section 3). 

3. THE 20‑BYTE OMISSION 

The Flow Meter in PSFP considers exactly one token per SDU 

byte. For a frame whose SDU length is 𝐿 bytes, the meter checks 

if 𝐿 tokens are available and, in that case, it then debits them 

from the token bucket before forwarding the frame. Otherwise, 

the frame is marked as yellow and, considering that the 

parameter dropOnYellow is set to True, the frame is dropped. 

However, transmitting frames with CBS debits 𝐿 + 20 bytes of 

credit from its token bucket. The 20‑byte overhead comprises 

the 8‑byte physical preamble and 12‑byte inter‑frame gap 

mandated by IEEE 802.3. 

Consider a CBS that is configured to have an incoming rate 

𝐵̅𝑀𝐴𝑋, measured in wire utilization bytes per second (the bar on 

top indicating that we are talking about wire utilization bytes, 

including everything from the Ethernet preamble to the IPG). At 

the ingress of a downstream bridge, if we want a PSFP filter to 

check that the CBS contract is not breached, a Flow Meter must 

be used. The question is: how to configure the Flow Meter? 

Consider first that there is a single stream of frames in the CBS 

queue, of which all frames have the same SDU size 𝐿. 

In this Flow Meter, since only SDU bytes are considered, the 

corresponding CIR will need to be 𝐵𝑀𝐴𝑋 =
𝐿

𝐿+20
𝐵̅𝑀𝐴𝑋, with 𝐿 

the SDU size of the frame and 𝐿̅ = 𝐿 + 20 the wire utilization 

of the frame. For example, if the filter is configured for Ethernet 

frames of maximum size, i.e., 𝐿 = 1522, the Flow Meter shall 

be configured using a CIR equal to 𝐵𝑀𝐴𝑋 =
1522

1542
𝐵̅𝑀𝐴𝑋.  

But what happens if the upstream node sends frames of minimal 

size 𝐿∗ = 64 instead of maximal size, and still respects the SDU 

byte rate 𝐵𝑀𝐴𝑋? In this case, the stream conforms to the Flow 

Meter, but the wire rate incoming to the CBS queue will be: 

𝐵̅𝑀𝐴𝑋
∗ =

𝐿∗̅

𝐿∗
(𝐵𝑀𝐴𝑋) =

84

64
⋅ (

1522

1542
𝐵̅𝑀𝐴𝑋) ≈ 1.2955𝐵̅𝑀𝐴𝑋  (1) 

This means that the filter will allow up to almost 30% more 

traffic than the limit that was expected, which may lead to buffer 

overflow. 

Inversely, if the filter is configured for Ethernet frames of 

minimum size (𝐿 = 64), the Flow Meter will be configured 

using a CIR of 𝐵𝑀𝐴𝑋 =
64

84
𝐵̅𝑀𝐴𝑋 , and for that same SDU 

transmission rate value, a talker that tries to send larger frames 

will reach that rate at: 

𝐵̅𝑀𝐴𝑋
∗ =

1542

1522
⋅ (

64

84
𝐵̅𝑀𝐴𝑋) ≈ 0.7719𝐵̅𝑀𝐴𝑋  (2) 

Therefore, if larger frames are used, the filter might block up to 

22.8% of the incoming traffic even if the CBS works correctly. 

However, the maxSDUSize parameter in the Stream Filter can 

avoid this behavior. A minSDUSize parameter would also be 

able to avoid the up-to-30% excess traffic for smaller frames, 

but the Stream Filter has no such parameter. 

Consider now a stream sending frames of variable size.  The size 

to consider for CBS configuration will depend on the type of 

contract. 

Either the contract conforms to the TSpec contract, and consists 

in a maximal number of frames, with a maximal size per frame, 

sent on some period of fixed duration (the “Class Measurement 

Interval”, CMI). In this case, the CBS should be configured to 

accept the maximal bandwidth, computed with the maximal 
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frame size (cf. §34.3 in [2]). As previously shown in eq. (1), the 

bigger the frame size is, the bigger the underestimation of the 

flow meter, leading to increased risk of undetected contract 

violations 

Alternatively, the contract may be defined using a token-bucket, 

which specifies a target throughput and an admissible burst in 

bytes. As shown previously, one must specify which bytes are 

considered in this contract. If only MSDU bytes are considered, 

then CBS must take as reference the smallest frame size, since 

this is the one that generates the highest possible on-wire’ 

throughput. If ‘on-wire’ bytes are considered, then the CBS 

configuration becomes independent on the frame size. 

However, a CBS queue is, in the general case, not dedicated to 

a single stream, it serves multiple streams. In such a setup, the 

total out-of-contract usage at the CBS’s queue’s output is the 

sum of per-stream excesses permitted by the individual PSFP 

meters forwarding streams to this queue.  

The excess traffic can be specially problematic if a CBS is used 

to shape the traffic that has just passed through the Flow Meter: 

if more bandwidth is let through than the contract had previously 

allowed, the load on the CBS-shaped output port that follows 

the Flow Meter might become larger than the configured 

idleSlope, leading to waiting queues that get completely filled 

and, therefore, to frames being dropped. Hence, this 

phenomenon results in a negative interference with every frame 

flow that shares that same waiting queue with the non-

conformant frame flow. That is to say, a single stream sending 

out-of-contract frames (ie. smaller frames than expected) may 

penalize all other streams in the same CBS queue. To illustrate 

these effects, some practical experiments are shown in the next 

section. 

4. EXPERIMENTS 

The setup is composed of three end-systems (Talker1, Talker2 

and Listener) and a switch connected to each one of them, as 

shown in Figure 5. This minimal setup is designed to clearly 

illustrate the issue at hand. It is important to notice that the issue 

can happen in any network set up so that more than one frame 

flow use the same waiting queue after passing through a Flow 

Meter. 

 

Figure 5: Testbed topology used for evaluation (capture from 

RTaW-Pegase). 

Talker1 and Talker2 are implemented in the hardware setup 

each by a computer with Linux (Ubuntu), a simple script in C to 

periodically generate network frames, and an “individual 

switch” between each Talker and SW that implements TAS 

gates: the goal is simply to guarantee strict periodicity and 

compensate for the imprecisions in the non-real-time operating 

system of each Talker. The Listener is a RELY-TSN-REC 

device, and the switch SW is a Relyum RELY-TSN12, with an 

internal memory of 32 kB for each output port. This switch has 

a granularity of 1 𝑀𝑏/𝑠 for CBS idleSlopes, 8 𝑘𝑏/𝑠 for Flow 

Meter CIRs and 1 𝐵 for Flow Meter CB-Sizes. As mentioned 

before, in the testbench setup, to overcome imprecisions in the 

Talker’s clocks and their non-real-time operating systems, as 

well as the impossibility to implement TAS directly on them, a 

Relyum switch is inserted between each Talker and the main 

switch SW. This setup enables the use of TAS with precisely 

scheduled transmission windows. 

Two distinct and strictly periodic frame flows are sent by the 

talkers to the Listener: F1 from Talker1, and F2 from Talker2. 

Both belong to the same traffic class. F2 is 500 bytes long (SDU, 

so 𝐿2 = 500 and 𝐿̅2 = 520), transmitted at every millisecond 

(𝑃2 = 1𝑚𝑠). For F1, three test cases are constructed: Nominal, 

Control and Faulty. 

The Nominal case is set to represent the expected behavior of 

the network given the nominal behavior of its talkers. The 

Control scenario represents an error or misconfiguration of 

Talker1 and the behavior of the network when the Flow Meter 

can successfully catch the discrepancies to the Nominal case. 

The Faulty scenario represents an error or misconfiguration of 

Talker1, making it behave as a “babbling idiot”, but in a way 

that cannot be caught by the Flow Meter, even though it 

increases the on-wire bandwidth utilization beyond what was 

specified by the frame’s contract. In the following, F1 has the 

following parameters for each case: 

1. Nominal: F1 is 1500 bytes long (𝐿1 = 1500 𝐵  and 

𝐿̅1 = 1520 𝐵 ) and its period 𝑃1 = 1𝑚𝑠 . Therefore, 

𝐵1 = 12 𝑀𝑏/𝑠 and 𝐵̅1 = 12.16 𝑀𝑏/𝑠. 

2. Control: F1 has 𝐿1
′ = 1500 𝐵  and 𝑃1

′ = 0.5𝑚𝑠 . 

Therefore, 𝐵1
′ = 24 𝑀𝑏/𝑠 and 𝐵̅1

′ = 24.32 𝑀𝑏/𝑠. 

3. Faulty: F1 has 𝐿1
′′ = 64  and 𝑃1

′′ = 0.043𝑚𝑠 . 

Therefore, 𝐵1
′′ = 11.91 𝑀𝑏/𝑠 and 𝐵̅1

′′ = 15.63 𝑀𝑏/𝑠. 

PSFP filters are defined in the switch SW so that F1 always 

passes through a specific Flow Meter FM1, and F2 through 

another Flow Meter, FM2. For simplicity, their dropOnYellow 

parameter is set to true. Also, a small margin is set to numerical 

values to avoid any effects related to the precision of clock 

synchronization. Their unique parameters are set as follows (for 

every test case): 

1. FM1: designed for F1 with a 1% margin for the CIR 

and a single byte margin for the CB-Size. 

a. CIR: 12120 𝑘𝑏/𝑠 

b. CB-Size: 1501 𝐵 
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2. FM2: designed for F2 with a 1% margin for the CIR 

and a single byte margin for the CB-Size. 

a. CIR: 4040 𝑘𝑏/𝑠 

b. CB-Size: 501 𝐵 

Also, a CBS is set in the output port of the switch that connects 

it to the Listener node. The CBS is set with respect to the 

nominal case and, therefore, its idleSlope shall be no less than 

12.16 + 4.16 = 16.32 𝑀𝑏/𝑠 . Due to the 1 𝑀𝑏/𝑠  granularity 

imposed by the hardware, it is set up to 17 𝑀𝑏/𝑠. 

4.1. Nominal Case Results 

A simulation of 10 seconds was conducted for the Nominal case 

using RTaW-Pegase and, as we can see in Figure 6, F1 can 

seamlessly pass through its Flow Meter token bucket, as 

expected: no frames are dropped. In that figure, time is 

represented as the horizontal axis, green rectangles are frames 

of F1 sent in the Talker1-SW link, and the saw-shaped curve 

represents the amount of credits the Flow Meter for F1 deployed 

in SW has. 

F2 can also pass seamlessly through SW, and we can see from 

Figure 7 (from RTaW-Pegase’s TraceInspector module) that the 

distance between subsequent F2 frames is distributed around its 

nominal period of 1 ms. The simulation of clock imprecisions 

can explain the non-negligible width of that distribution. 

 

Figure 6: Simulation results for the link Talker1-SW in the 

Nominal case (capture from RTaW-Pegase). 

 

Figure 7: Simulation for inter-frame distance distribution for 

F2 in the SW-Listener link for the Nominal case (capture from 

RTaW-Pegase). 

Then, the hardware setup was tested and the frames received in 

the Listener were captured to be later analyzed. Figure 8 shows 

the distribution of distances between consecutive F2 frames, as 

extracted using RTaW-Pegase’s TraceInspector module. No 

significant jitter is observed in the reception times of F2 frames 

at the Listener node. 

 

Figure 8: Inter-frame distance distribution for F2, captured in 

the hardware setup at the Listener. No jitters are observed. 

4.2. Control Case Results 

A simulation of 10 seconds was conducted for the Control case 

using RTaW-Pegase and, as can be seen in Figure 9, one out of  

every two F1 frames is dropped by the Flow Meter. This is 

expected, since F1 breaches the specified contract for that frame 

(𝐵̅1
′ > 𝐵̅1 and 𝐵1

′ > 𝐵1). F2 can pass seamlessly by the filters, 

and we can see from Figure 10 that the distribution of the 

distance between subsequent F2 frames is the same as in the 

Nominal case. 

 

Figure 9: Simulation results for the link Talker1-SW in the 

Control case (frame drops represented as black Xs). 

 

Figure 10: Simulation for inter-frame distance distribution for 

F2 in the SW-Listener link for the Control case. The behavior 

observed is similar to the Nominal case thanks to the filtering. 

As shown in Figure 11, the hardware frame capture does not 

reveal any noticeable effects associated with the Control case. 

 

Figure 11: Inter-frame distance distribution for F2, captured in 

the hardware setup at the Listener for the Control case. The 

observed behavior matches the best-case scenario. 
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4.3. Faulty Case Results 

A simulation of 10 seconds was conducted for the Faulty case 

using RTaW-Pegase. Figure 12 shows that, although F1 does not 

conform to the on-wire bandwidth contract (𝐵̅1
′′ > 𝐵̅1), the Flow 

Meter is incapable of filtering the excess traffic, since 𝐵1
′′ < 𝐵1 

due to the 20-byte overhead. 

 

Figure 12: Simulation results for the link Talker1-SW in the 

Faulty case. 

Since the filter let through excess traffic, it can be seen from 

Figure 13 that a significant jitter appears for F2. More than that, 

the concentration of the distribution around the values of twice, 

three times and four times the original period indicates 

important frame losses: one for each 2 frames, 2 for each 3 

frames and even 3 for each 4 frames. 

 

Figure 13: Simulation for inter-frame distance distribution for 

F2 in the SW-Listener link for the Faulty case. 

The scenario observed in the simulation can be verified in the 

data captured by the Listener in the hardware setup, as can be 

seen in Figure 14. 

 

Figure 14: Inter-frame distance distribution for F2, captured in 

the hardware setup at the Listener for the Faulty case. 

4.4. Results Discussion 

Simulations and network trace captures have shown that Flow 

Meters might protect from certain CBS non-conformities such 

as the one modeled by the Control case. However, results from 

the Faulty case demonstrate that Flow Meters alone cannot fully 

safeguard the network against all classes of non-conforming 

behaviors. 

The inability to block excess bandwidth usage will have an 

impact on every flow that shares the same CBS as the faulty 

traffic, causing frame losses in the event of a “babbling idiot” 

fault. Such scenario can occur in any network using CBSs 

despite the use of Flow Meters to enforce their contract, unless 

specific mitigation strategies are applied. 

5. MITIGATION STRATEGIES 

5.1. Mitigation with over-provisioning 

Since the Flow Meter is inherently unable to fully enforce 

bandwidth contracts, to avoid frame drops due to queue 

saturation, mitigation necessarily relies on overprovisioning. 

Therefore, if a CBS queue aggregates several flows and there is 

a need to protect one flow from misbehaviors of others, relying 

solely on per-flow metering via PSFP is insufficient. In such 

cases, the CBS idleSlope must be increased to cope with such a 

situation. 

Figure 15 shows the required correction to be added to the 

idleSlope of a CBS for each flow that passes through it, based 

on the flow maximum message size (in SDU bytes). The 

correction is derived from the following analytical expression, 

where 𝑘  is the increase in the idleSlope and 𝐿  is the SDU 

message size in bytes: 

𝑘 = (
84

64
⋅

𝐿

𝐿 + 20
− 1) ⋅ 100% 

 

Figure 15: Required idleSlope increase to prevent queue 

saturation as a function of frame size (SDU bytes). 

For example, if a CBS is configured at the output port of a switch 

that aggregates three distinct flows 𝑋 , 𝑌  and 𝑍 , then in the 

nominal case, the CBS’s idleSlope is set as: 

𝑖𝑑𝑙𝑒𝑆𝑙𝑜𝑝𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑙 = 𝐵̅𝑋 + 𝐵̅𝑌 + 𝐵̅𝑍 

But to protect frame 𝑋 from a “babbling idiot” fault of 𝑌 and 𝑍 

simultaneously, the corrected idleSlope must satisfy the 

following inequality: 

𝑖𝑑𝑙𝑒𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 ≥ 𝐵̅𝑋 + (1 + 𝑘𝑌)𝐵̅𝑌 + (1 + 𝑘𝑍)𝐵̅𝑍 

An analogous logic would apply for flows 𝑌  and 𝑍 . A safe 

idleSlope value can then be chosen as the minimum value that 

satisfies all three constraints simultaneously. 
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As illustrated in Figure 15, avoiding queue saturation in the 

presence of a “babbling idiot” fault requires allocating 

significantly more bandwidth to CBS-shaped traffic—even 

when the frame size 𝐿 is relatively small. For instance, at 𝐿 =
200 bytes, approximately 20% more bandwidth is needed to 

maintain safe operation. However, this overhead may be 

acceptable in some scenarios, particularly as the deployment of 

gigabit-class Ethernet links becomes more common. 

5.2. Standard‑Level or Product Enhancements 

While the mitigation strategy is limited, correction can be 

achieved with minimal changes and could be implemented 

either through updates to the standard or as extensions provided 

by TSN switch manufacturers. 

One first possible solution, inspired by AFDX, is to enforce a 

minimum frame size per stream. Since many streams transmit 

fixed-size frames, allowing PSFP to check for a stream-specific 

minimum size would prevent overuse of transmission time on 

the wire. Given that PSFP already supports maximum frame size 

checks, this would be a relatively minor extension of its 

capabilities. However, such an approach is not universally 

applicable. For instance, in video streams, the application-level 

data is often fragmented into multiple Ethernet frames, and there 

is no guarantee regarding the size of the final fragment. 

A second solution is to have PSFP account for the 20-byte media 

overhead. Since CBS already includes this overhead in its 

shaping calculations, the capability to consider it already exists 

within the device. However, CBS operates at the output port, 

whereas PSFP is applied at the ingress of the switch. Despite 

this separation, it is worth noting that ATS—typically 

implemented immediately after PSFP (see Fig. 8.13 in [2])—

does incorporate the media-specific overhead when computing 

eligibility times, as specified in §8.6.5.6 of [2]. This suggests 

that integrating similar awareness into PSFP is feasible and 

aligned with existing TSN mechanisms. 

In both cases, such evolutions can be made in the standard itself 

or proposed as extensions by the hardware providers. 

5.3. Mitigation in AFDX 

AFDX also has policing elements based on token bucket, like 

the PSFP meters. In AFDX, each flow must have its own token 

bucket (whereas several flows can share the same PSFP in 

TSN). But this token bucket takes into account the media 

overhead (using the term “line size”), cf. § 4.1.1.1 and Figure 4-

2 in [8].1 Moreover, a minimal and maximal frame size must be 

specified for each flow, and the amount of media overhead is 

computed based on the minimal frame size. Frames with smaller 

sizes are dropped. Lastly, AFDX may get rid of considering such 

overhead by using a per-frame policing instead of a per-byte 

policing, cf. § 4.1.1.3. 

 
1 “The frame size value shown in Figure 4-2 corresponds to the actual 

time a frame occupies the Ethernet line (s). Therefore, all fields must 

5.4. Mitigation on TSN/ATS 

We have shown in previous sections that PSFP is unable to 

prevent a faulty or malicious switch from increasing the delays 

at a downstream switch, leading to increased latencies or even 

buffer overflows. 

For ATS, the situation is slightly different. ATS shaping is based 

on the computation of an eligibility time for each frame, and 

each frame will be allowed to be transmitted only once that 

timestamp is reached.  Consider first the common case of per 

stream ATS shaping, where each stream is individually policed 

by PSFP 

As with CBS, the PSFP meter cannot distinguish small frames 

from big frames. Since the eligibility time calculation includes 

the “media specific overhead” (cf. § 8.6.5.6 in [2]), sending 

several small frames instead of one big one will create more 

overhead and increases latency.  But ATS shapers are organized 

into groups, with one group per input port, that enforces a FIFO 

behavior inside a group. Consequently, an increase in delay 

affects all flows within the same group but not flows arriving 

from other input ports.  However, all ATS traffic within a given 

class is enqueued into the same output queue. This means a 

faulty or malicious switch, even if unable to delay traffic from 

other sources, may still attempt to overflow the shared class 

buffer. Fortunately ATS offers a counter-measure: the standard 

defines a MaximumResidenceTime. Frames that exceed this 

limit can be dropped. This mechanism allows the system to 

discard excessively delayed frames—such as those affected by 

small-frame overhead—thus helping to prevent buffer overflow. 

6. CONCLUSION 

Time-sensitive applications are using PSFP increasingly to 

improve safety, but our evaluation shows that it cannot 

guarantee complete protection from faults in all situations. We 

found that a small 20-byte accounting mismatch in how frame 

sizes are counted can let a data flow send up to 30% more traffic 

than allowed. We also saw that the way CBS recovers its credit 

after sending a burst can force network engineers to set much 

higher burst allowances than should be needed, which makes 

traffic control less accurate. Together, these issues can lead to 

delays and buffer overflows, even in networks that are set up 

correctly. 

Still, PSFP remains a valuable tool for limiting the effects of 

faults, if applied carefully. We have shown that problems can be 

avoided by overprovisioning for CBS idleSlopes. Beyond that, 

we propose practical improvements to the standard: (1) allowing 

Flow Meters to account for the actual on-wire size, and (2) 

checking frame sizes against a minimum allowed value, similar 

to the existing maxSDUSize constraint. Both changes are 

incremental, compatible with current systems, and preserve the 

simplicity of PSFP design. 

Looking forward, we believe that emerging traffic shaping 

mechanisms such as ATS hold promise for reducing or 

be considered: IPG (12 octets) + Preamble (8 octets) + MAC Frame 

size (L = 64 to 1518 octets).” 
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eliminating the need for oversized buffers. However, combining 

ATS with PSFP and ensuring robust performance across diverse 

traffic patterns remains a complex challenge and an area for 

future investigation. 

We hope that network engineers, tool developers, and 

standardization bodies will find these observations useful to 

refine existing mechanisms, and validate behavior through real-

world deployments to advance TSN reliability and fault-

tolerance. 
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