
European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 1

PSFP in TSN Networks: Insights into Some Practical Limitations

Matheus Ladeira1, Marc Boyer2, Nicolas Navet3 and Léo Seguin1

1Realtime-at-Work, Nancy, France

matheus.ladeira@realtimeatwork.com, leo.seguin@realtimeatwork.com

2DTIS, Onera, Université de Toulouse, 31000, Toulouse, France

marc.boyer@onera.fr

3University of Luxembourg & Cognifyer, Esch-sur-Alzette, Luxembourg

nicolas.navet@cognifyer.ai

ABSTRACT

Per-Stream Filtering and Policing (PSFP), standardized in IEEE

802.1Qci, is a mechanism for providing fault containment in

Time-Sensitive Networking (TSN) networks. This paper

examines limitations of PSFP, showing that the fault-

containment can be insufficient. In particular, the Flow Meter

inside PSFP measures traffic in Service Data Unit (SDU) bytes

– i.e., from the MAC destination address through the Frame

Check Sequence. However, common Ethernet shapers such as

the Credit-Based Shaper (CBS) regulate traffic based on the full

'on-wire' packet length, which includes the SDU plus the 8-byte

preamble and the 12-byte inter-frame gap. This results in a 20-

byte per-frame gap that increases admissible rates: with

minimum-size packets, a talker can exceed its contractual

bandwidth by up to 30%. In addition to the contract not being

enforced, an independent stream might be penalized due to a

queue build up. Through simulations with RTaW-Pegase

software and hardware-in-the-loop experiments on a TSN

testbed, we quantify these effects and evaluate configuration-

level mitigations. We then discuss possible evolutions of the

standard, including overhead-aware byte counting, which could

address these gaps.

1. INTRODUCTION

Time‑Sensitive Networking (TSN) has emerged as the de‑facto

toolbox for mixed control, audio‑video and best‑effort traffic on

a shared Ethernet backbone. Standards such as 802.1Qbv

(Time‑Aware Shaper – TAS) and 802.1Qav (Credit‑Based

Shaper – CBS) provide latency and bandwidth guarantees. In

this landscape, Per‑Stream Filtering and Policing (PSFP)

defined by IEEE 802.1Qci is often promoted as a “safety net”

that converts a well‑engineered TSN configuration into a

fault‑free network: any stream that violates the contract is

assumed to be dropped before it can harm others.

PSFP doesn't actually prevent faults: instead, it limits their

impact using traffic filters that discard individual packets or that

entirely block streams. As we will show, those mechanisms, in

some cases, are not 100% effective. One mechanism is

especially problematic: the byte-count mismatch [1] between

the PSFP’s Flow Meter (which considers only the bytes between

the MAC addresses and the Frame Check Sequence) and the

idleSlope parameter for a CBS (which considers the full on-wire

packet length including the Ethernet preamble and the Inter

Frame Gap). The 20‑byte gap per frame especially affects

streams that use small packets, potentially inflating their

throughput by as much as 30%. This issue is explored in detail

in Section 3.

The purpose of this article is to provide an analysis of this

limitation, showing a practical example of how it can present

itself in a real network. Then, we outline possible solutions to

avoid the issue, ranging from parameter tuning to possible

standard amendments.

The remainder of the paper is organized as follows: Section 2

recaps relevant TSN concepts, notably the PSFP mechanism.

Section 3 explains the byte-counting mismatch. Section 4

presents a practical example of how the mismatch may cause

issues, both with a numerical simulation using RTaW-Pegase

and with an implementation on a hardware test-bench. Section 5

presents mitigation strategies that can be already adopted in the

current situation. Section 6 discusses possible changes to the

current standard and products’ implementation that could

mitigate the issue. Then, Section 7 concludes the article, with

perspectives for future research on the topic.

2. BACKGROUND

2.1. Ethernet Packet, SDU and MSDU

An Ethernet Packet is composed of several parts, which are

depicted in Figure 1. The preamble consists of 8 bytes, the

Interpacket Gap (IPG) consists of (at least) 12 bytes, and the

Service Data Unit (SDU) makes up the Ethernet Frame. The

whole Ethernet packet overhead with respect to the SDU is 20

bytes.

Matheus Ladeira et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution 4.0, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

author and source are credited.

mailto:matheus.ladeira@realtimeatwork.com
mailto:leo.seguin@realtimeatwork.com
mailto:marc.boyer@onera.fr
mailto:nicolas.navet@cognifyer.ai

PSFP in TSN Networks: Insights into Some Practical Limitations

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 2

Figure 1: Structure of an Ethernet packet. The SDU spans from

the MAC destination address to the Frame Check Sequence

(FCS), excluding the 8-byte preamble and 12-byte inter-packet

gap (IPG), which make up 20-byte media overhead sent on the

wire but not accounted for by the PSFP Flow Meter.

The SDU itself is composed of several parts: 6 bytes of a

destination MAC address, another 6 bytes for a source MAC

address, optional 4 bytes of a Q-Tag in case VLANs are used, 2

bytes encoding the type of payload (EthType), the payload itself

(also known as the MAC-layer SDU, or MSDU, which must be

at least 46 bytes long and at most 1500 bytes long, although

frames with a Q-Tag present can have a payload as short as 42

bytes [IEEE 802.1Q, Annex G]), and finally 4 bytes for a Frame

Check Sequence (FCS). Therefore, the overhead of the SDU

with respect to the MSDU is 18 bytes (or 22, if a Q-Tag is

present). The SDU’s minimum size is 64 bytes whether a Q-Tag

is present or not, and its maximum size is 1518 bytes without a

Q-Tag, and 1522 with it.

To calculate the full on-wire length of a frame of MSDU size of

𝑁, in bytes:

1. First, compute the SDU length 𝐿 : 𝐿 = 𝑁 + 12 (MAC

destination + MAC source) + 2 (EthType) + 4 (FCS) + 4

(Q-Tag, optional) + padding (if necessary, so that 𝐿 ≥ 64

bytes). In other words, 𝐿 = 𝑁 + 22 bytes + possible

padding, considering there is a Q-Tag since we are working

with VLANs.

2. Then, add the 8-byte preamble and 12-byte IPG, so that the

full Ethernet packet length on the wire = 𝐿 + 20 bytes.

2.2. TSN Tool‑Chain Recap

Time-Sensitive Networking (TSN) is built as an extension to

standard Ethernet (IEEE 802.3) via a sequence of IEEE 802.1Q

amendments that, when combined, guarantee bounded latency,

jitter, and fault containment. Figure 2 illustrates how a packet is

processed through a TSN-enabled bridge or switch [2].

Figure 2: Processing steps in a TSN-enabled bridge. Each

incoming packet traverses a sequence of TSN functions before

reaching the output port.

In TSN, data flows are called “streams”, and must have a unique

identifier. This identifier is used for filtering, metering, etc.

2.2.1. 802.1Qbv – Time-Aware Shaper (TAS)

The Time-Aware Shaper (TAS) enforces a time-division

multiple access (TDMA) schedule by gating traffic open or

closed according to a Gate Control List (GCL) running on a

synchronized time base (IEEE 802.1AS). It does not meter bytes

itself. Instead, it ensures that packets of a given class can only

be transmitted during their assigned time window, as defined by

the periodic CycleTime and each GCL entry’s GateOpenInterval

and GateCloseInterval. To prevent interference, when the TAS

gate assigned to a high-priority queue is open, the gates for other

queues are typically closed, a configuration known as “exclusive

gating”.

Once all GCLs have been configured in an adequate way, TAS

guarantees real-time latency and bounded jitter to each frame.

Nevertheless, TAS configuration is a hard problem, especially

when the load increases [3] [4].

Except for very specific cases, it is, to the best of our knowledge,

common practice to assign exclusive time windows to only 10

to 30% of the link capacity to TAS.

Moreover, to minimize end-to-end latencies, the use of TAS

requires a synchronization between the applications and the

network. Indeed, since some time intervals are devoted to

frames, the frames must be ready when the window opens. This

implies that the schedule of the tasks and the network must be

co-designed. This use-case – supporting data flows with strict

latency and jitter requirements – is one of the primary

applications of TAS.

2.2.2. Qav – Credit-Based Shaper (CBS)

The Credit-Based Shaper (CBS) was developed for Audio-

Video Bridging (AVB) and provides per-class bandwidth

reservation and bounded delays. Each output queue can be

managed by a CBS shaper. Its most important shaping parameter

is the idleSlope, which specifies the long-term transmission rate

in bytes per second. The aim of CBS is to do as if the queue was

connected to a link whose throughput is equal to the idleSlope

(when we consider a sufficiently large time window). CBS

guarantees a minimal service for the shaped queue while

limiting its burstiness, leaving room for frames in lower priority

queues. This is done using one single counter per queue, the

credit. Note that some deviations between CBS and an ideal

isolated link with configured throughput exist, but this is beyond

the scope of this article [5].

Whenever a frame is eligible for transmission, CBS checks that

the credit bucket is not negative. If this is the case, the frame

transmission starts immediately, and credit is progressively

reduced during the transmission by an amount proportional to

the frame’s full on-wire length (SDU + 20), possibly reaching

negative values.

When the traffic class is not transmitting, if the credit is negative

or if there are frames waiting in the queue to be sent, the credit

amount increases at a rate defined by the idleSlope. The credit

PSFP in TSN Networks: Insights into Some Practical Limitations

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 3

will stop increasing when it reaches zero if there are no frames

waiting in the queue, but it may become larger than zero if there

is a frame in the queue that needs to wait for the end of

transmission of a frame from another traffic class. Because CBS

considers the full Ethernet-packet size per frame, the long-term

transmission rate approaches the one a real link would have if

its transmission rate were equivalent to the idleSlope.

To guarantee bounded delays and prevent buffer overflows

during traffic bursts, the idleSlope of a CBS-shaped queue must

be strictly greater than the average throughput of the traffic class

it shapes [7]. It must be set so that, over time, the shaper

accumulates enough credit to transmit possible bursts without

violating delay constraints.

For example, to illustrate this behavior, in Figure 3 we represent

a non-CBS frame (depicted in green) that is being transmitted

when a burst of CBS-shaped messages (depicted in blue) arrives

in the sending queue. The credit, represented as the red line,

which was zero in the beginning, starts increasing in the moment

the CBS-shaped burst arrives, with a rate defined by the

idleSlope, until the non-CBS frame is done and the first of the

CBS frames starts its transmission. From that moment onward,

the CBS credit decreases at a rate equal to the link's transmission

rate minus the idleSlope. Once the frame completes its

transmission, the credit starts increasing again at a rate equal to

the idleSlope. Although CBS-shaped frames are already waiting

in the queue, they cannot be sent before the amount of CBS

credits reaches a non-negative value.

Figure 3: Evolution of CBS credit during burst arrival.

CBS provides real time guarantees to data flows, and there are

several efficient methods to configure and analyze CBS flows in

TSN networks [6] [7]. CBS is particularly well suited for bursty

or asynchronous traffic, without strong jitter constraints.

Note that when TAS and CBS are used together on the same

output port, CBS is paused while TAS is active to ensure priority

traffic isolation. To maintain the intended average bandwidth,

the CBS idleSlope must be scaled proportionally, using the

formula

𝑖𝑑𝑙𝑒𝑆𝑙𝑜𝑝𝑒 = 𝑜𝑝𝑒𝑟𝐼𝑑𝑙𝑒𝑆𝑙𝑜𝑝𝑒 ×
𝑂𝑝𝑒𝑟𝐶𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒

𝐺𝑎𝑡𝑒𝑂𝑝𝑒𝑛𝑇𝑖𝑚𝑒

where OperCycleTime is the TAS GCL period, and

GateOpenTime is the total amount of time that the CBS gate is

open during this period.

2.2.3. 802.1Qcr – Asynchronous Traffic Shaping (ATS)

ATS is introduced by IEEE 802.1Qcr (years after TAS and

CBS) whose goal is to give every hop along a path the same tight

per-flow traffic profile without relying on a global time schedule

or on strict credit accounting. Unlike TAS, it needs no 802.1AS

time-synchronisation and unlike the classic Credit-Based

Shaper, it never lets “positive credit” build up, so burst cascades

cannot occur. In addition, unlike CBS, which applies shaping

per traffic class, ATS provides native per-flow shaping.

2.3. PSFP Fundamentals

Per-Stream Filtering and Policing (PSFP) is a per-stream

“firewall” that contains misbehaving talkers by dropping any

packets that exceed traffic contracts and, in stricter

configurations, even block entire streams that fail filtering

conditions. PSFP comprises three sequential stages: Stream

Filter, Gate Filter and Flow Meter. These stages are represented

in Figure 4.

Figure 4: Illustration of filtering steps in PSFP.

2.3.1. Stream Filter (IEEE 802.1Qci § 8.6.5.1):

The Stream Filter is mainly a selection and orientation stage,

augmented with a few filtering and monitoring mechanisms. An

incoming frame passes through a list of filter-matching tests and

gets processed by the first filter that fits.

The matching is based on the Stream Handle (defined by stream

identification methods that may use source and destination

MAC addresses, VLAN, IP and other parameters, in

combination with the input port) and/or the priority of the frame.

Once selected, the filter tests if the frame size exceeds its

maxSDUSize parameter. Such frames are dropped. If the packet

matches the parameters of the filter and respects the

maxSDUsize, it proceeds to a Gate Filter defined by this Stream

Filter. If the frame is not dropped by the Gate Filter, it then

proceeds to the Flow Meter defined by this same Stream Filter.

If the packet does not match any filter entry in the list, it is

forwarded. To avoid that behavior and drop all unknown frames,

the user can define a filter entry at the end of the Stream Filter

list that matches any incoming frame using wildcards for the

stream handle and the priority fields, pointing them to a

permanently closed Gate Filter.

2.3.2. Gate Filter (IEEE 802.1Qci § 8.6.5.2):

Each Gate Filter holds a Stream Control List (SCL): a time-

indexed gate state (open/close). If the gate is “closed” at packet

arrival, the packet is dropped. If “open,” the packet proceeds to

the Flow Meter assigned by the Stream Filter.

PSFP in TSN Networks: Insights into Some Practical Limitations

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 4

This gate filter can be used to enforce TAS time-window

policies: if clocks of the upstream TAS switch and the local

switch are synchronized (which is a common requirement for

TAS correct behavior), the SCL can be built to ensure that

packets arriving outside their assigned time window are

discarded, therefore avoiding errors to propagate across the

network.

2.3.3. Flow Meter (IEEE 802.1Qci § 8.6.5.3):

Each Flow Meter implements either a single or a double token-

bucket meter, depending on the dropOnYellow boolean

parameter (if true, then a single token-bucket is implemented;

otherwise, two are implemented). The token-bucket that is

always present has two key parameters:

1. Committed Information Rate (CIR), expressed in SDU

bytes per time interval, defining the rate at which the token

bucket is filled.

2. Committed Burst Size (CB-Size), also in SDU bytes,

defining the maximum number of tokens that can exist in

the token-bucket. Note that, in the IEEE standard, the CB-

Size and the Credit-Based Shaper are both referred to as

“CBS”. However, to avoid ambiguity, we deliberately

chose to use a different acronym, CB-Size, for the

Committed Burst Size throughout this article.

If dropOnYellow is false, then two similar parameters are set:

the Excess Information Rate (EIR), analogous to the CIR, and

the Excess Burst Size, analogous to the CB-Size.

A frame can pass a flow meter by consuming one token per byte.

If dropOnYellow is false, if the first token-bucket does not have

enough tokens for the size of the frame candidate, the frame is

forwarded to the second token-bucket; then, if the second token-

bucket does not have enough tokens, the frame is dropped.

However, if dropOnYellow is true, if the first token-bucket does

not have enough tokens for the size of the frame candidate, it is

immediately dropped.

Due to the token bucket mechanism that is similar to the one

used in CBSs, Flow Meters can be used to enforce CBS

contracts and avoid errors or misconfigurations. Nonetheless,

their token bucket mechanisms present important differences

that result in the impossibility of perfectly filtering CBS non-

conformities: PSFP’s Flow Meter token bucket charges only the

SDU length 𝐿 – that is, 𝑁 (MSDU) plus 22 bytes (MAC dest +

MAC src + QTag + EthType + FCS, plus any padding). It does

not include the 8-byte preamble or 12-byte IPG. Thus, while

CBS accounts (SDU + 20) bytes per frame, PSFP only “sees”

SDU bytes. Over many small packets, the 20-byte per-packet

discrepancy accumulates and may result in the flow exceeding

its contractual limit without it being detected by PSFP

(Section 3).

3. THE 20‑BYTE OMISSION

The Flow Meter in PSFP considers exactly one token per SDU

byte. For a frame whose SDU length is 𝐿 bytes, the meter checks

if 𝐿 tokens are available and, in that case, it then debits them

from the token bucket before forwarding the frame. Otherwise,

the frame is marked as yellow and, considering that the

parameter dropOnYellow is set to True, the frame is dropped.

However, transmitting frames with CBS debits 𝐿 + 20 bytes of

credit from its token bucket. The 20‑byte overhead comprises

the 8‑byte physical preamble and 12‑byte inter‑frame gap

mandated by IEEE 802.3.

Consider a CBS that is configured to have an incoming rate

𝐵̅𝑀𝐴𝑋, measured in wire utilization bytes per second (the bar on

top indicating that we are talking about wire utilization bytes,

including everything from the Ethernet preamble to the IPG). At

the ingress of a downstream bridge, if we want a PSFP filter to

check that the CBS contract is not breached, a Flow Meter must

be used. The question is: how to configure the Flow Meter?

Consider first that there is a single stream of frames in the CBS

queue, of which all frames have the same SDU size 𝐿.

In this Flow Meter, since only SDU bytes are considered, the

corresponding CIR will need to be 𝐵𝑀𝐴𝑋 =
𝐿

𝐿+20
𝐵̅𝑀𝐴𝑋, with 𝐿

the SDU size of the frame and 𝐿̅ = 𝐿 + 20 the wire utilization

of the frame. For example, if the filter is configured for Ethernet

frames of maximum size, i.e., 𝐿 = 1522, the Flow Meter shall

be configured using a CIR equal to 𝐵𝑀𝐴𝑋 =
1522

1542
𝐵̅𝑀𝐴𝑋.

But what happens if the upstream node sends frames of minimal

size 𝐿∗ = 64 instead of maximal size, and still respects the SDU

byte rate 𝐵𝑀𝐴𝑋? In this case, the stream conforms to the Flow

Meter, but the wire rate incoming to the CBS queue will be:

𝐵̅𝑀𝐴𝑋
∗ =

𝐿∗̅

𝐿∗
(𝐵𝑀𝐴𝑋) =

84

64
⋅ (

1522

1542
𝐵̅𝑀𝐴𝑋) ≈ 1.2955𝐵̅𝑀𝐴𝑋 (1)

This means that the filter will allow up to almost 30% more

traffic than the limit that was expected, which may lead to buffer

overflow.

Inversely, if the filter is configured for Ethernet frames of

minimum size (𝐿 = 64), the Flow Meter will be configured

using a CIR of 𝐵𝑀𝐴𝑋 =
64

84
𝐵̅𝑀𝐴𝑋 , and for that same SDU

transmission rate value, a talker that tries to send larger frames

will reach that rate at:

𝐵̅𝑀𝐴𝑋
∗ =

1542

1522
⋅ (

64

84
𝐵̅𝑀𝐴𝑋) ≈ 0.7719𝐵̅𝑀𝐴𝑋 (2)

Therefore, if larger frames are used, the filter might block up to

22.8% of the incoming traffic even if the CBS works correctly.

However, the maxSDUSize parameter in the Stream Filter can

avoid this behavior. A minSDUSize parameter would also be

able to avoid the up-to-30% excess traffic for smaller frames,

but the Stream Filter has no such parameter.

Consider now a stream sending frames of variable size. The size

to consider for CBS configuration will depend on the type of

contract.

Either the contract conforms to the TSpec contract, and consists

in a maximal number of frames, with a maximal size per frame,

sent on some period of fixed duration (the “Class Measurement

Interval”, CMI). In this case, the CBS should be configured to

accept the maximal bandwidth, computed with the maximal

PSFP in TSN Networks: Insights into Some Practical Limitations

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 5

frame size (cf. §34.3 in [2]). As previously shown in eq. (1), the

bigger the frame size is, the bigger the underestimation of the

flow meter, leading to increased risk of undetected contract

violations

Alternatively, the contract may be defined using a token-bucket,

which specifies a target throughput and an admissible burst in

bytes. As shown previously, one must specify which bytes are

considered in this contract. If only MSDU bytes are considered,

then CBS must take as reference the smallest frame size, since

this is the one that generates the highest possible on-wire’

throughput. If ‘on-wire’ bytes are considered, then the CBS

configuration becomes independent on the frame size.

However, a CBS queue is, in the general case, not dedicated to

a single stream, it serves multiple streams. In such a setup, the

total out-of-contract usage at the CBS’s queue’s output is the

sum of per-stream excesses permitted by the individual PSFP

meters forwarding streams to this queue.

The excess traffic can be specially problematic if a CBS is used

to shape the traffic that has just passed through the Flow Meter:

if more bandwidth is let through than the contract had previously

allowed, the load on the CBS-shaped output port that follows

the Flow Meter might become larger than the configured

idleSlope, leading to waiting queues that get completely filled

and, therefore, to frames being dropped. Hence, this

phenomenon results in a negative interference with every frame

flow that shares that same waiting queue with the non-

conformant frame flow. That is to say, a single stream sending

out-of-contract frames (ie. smaller frames than expected) may

penalize all other streams in the same CBS queue. To illustrate

these effects, some practical experiments are shown in the next

section.

4. EXPERIMENTS

The setup is composed of three end-systems (Talker1, Talker2

and Listener) and a switch connected to each one of them, as

shown in Figure 5. This minimal setup is designed to clearly

illustrate the issue at hand. It is important to notice that the issue

can happen in any network set up so that more than one frame

flow use the same waiting queue after passing through a Flow

Meter.

Figure 5: Testbed topology used for evaluation (capture from

RTaW-Pegase).

Talker1 and Talker2 are implemented in the hardware setup

each by a computer with Linux (Ubuntu), a simple script in C to

periodically generate network frames, and an “individual

switch” between each Talker and SW that implements TAS

gates: the goal is simply to guarantee strict periodicity and

compensate for the imprecisions in the non-real-time operating

system of each Talker. The Listener is a RELY-TSN-REC

device, and the switch SW is a Relyum RELY-TSN12, with an

internal memory of 32 kB for each output port. This switch has

a granularity of 1 𝑀𝑏/𝑠 for CBS idleSlopes, 8 𝑘𝑏/𝑠 for Flow

Meter CIRs and 1 𝐵 for Flow Meter CB-Sizes. As mentioned

before, in the testbench setup, to overcome imprecisions in the

Talker’s clocks and their non-real-time operating systems, as

well as the impossibility to implement TAS directly on them, a

Relyum switch is inserted between each Talker and the main

switch SW. This setup enables the use of TAS with precisely

scheduled transmission windows.

Two distinct and strictly periodic frame flows are sent by the

talkers to the Listener: F1 from Talker1, and F2 from Talker2.

Both belong to the same traffic class. F2 is 500 bytes long (SDU,

so 𝐿2 = 500 and 𝐿̅2 = 520), transmitted at every millisecond

(𝑃2 = 1𝑚𝑠). For F1, three test cases are constructed: Nominal,

Control and Faulty.

The Nominal case is set to represent the expected behavior of

the network given the nominal behavior of its talkers. The

Control scenario represents an error or misconfiguration of

Talker1 and the behavior of the network when the Flow Meter

can successfully catch the discrepancies to the Nominal case.

The Faulty scenario represents an error or misconfiguration of

Talker1, making it behave as a “babbling idiot”, but in a way

that cannot be caught by the Flow Meter, even though it

increases the on-wire bandwidth utilization beyond what was

specified by the frame’s contract. In the following, F1 has the

following parameters for each case:

1. Nominal: F1 is 1500 bytes long (𝐿1 = 1500 𝐵 and

𝐿̅1 = 1520 𝐵) and its period 𝑃1 = 1𝑚𝑠 . Therefore,

𝐵1 = 12 𝑀𝑏/𝑠 and 𝐵̅1 = 12.16 𝑀𝑏/𝑠.

2. Control: F1 has 𝐿1
′ = 1500 𝐵 and 𝑃1

′ = 0.5𝑚𝑠 .

Therefore, 𝐵1
′ = 24 𝑀𝑏/𝑠 and 𝐵̅1

′ = 24.32 𝑀𝑏/𝑠.

3. Faulty: F1 has 𝐿1
′′ = 64 and 𝑃1

′′ = 0.043𝑚𝑠 .

Therefore, 𝐵1
′′ = 11.91 𝑀𝑏/𝑠 and 𝐵̅1

′′ = 15.63 𝑀𝑏/𝑠.

PSFP filters are defined in the switch SW so that F1 always

passes through a specific Flow Meter FM1, and F2 through

another Flow Meter, FM2. For simplicity, their dropOnYellow

parameter is set to true. Also, a small margin is set to numerical

values to avoid any effects related to the precision of clock

synchronization. Their unique parameters are set as follows (for

every test case):

1. FM1: designed for F1 with a 1% margin for the CIR

and a single byte margin for the CB-Size.

a. CIR: 12120 𝑘𝑏/𝑠

b. CB-Size: 1501 𝐵

PSFP in TSN Networks: Insights into Some Practical Limitations

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 6

2. FM2: designed for F2 with a 1% margin for the CIR

and a single byte margin for the CB-Size.

a. CIR: 4040 𝑘𝑏/𝑠

b. CB-Size: 501 𝐵

Also, a CBS is set in the output port of the switch that connects

it to the Listener node. The CBS is set with respect to the

nominal case and, therefore, its idleSlope shall be no less than

12.16 + 4.16 = 16.32 𝑀𝑏/𝑠 . Due to the 1 𝑀𝑏/𝑠 granularity

imposed by the hardware, it is set up to 17 𝑀𝑏/𝑠.

4.1. Nominal Case Results

A simulation of 10 seconds was conducted for the Nominal case

using RTaW-Pegase and, as we can see in Figure 6, F1 can

seamlessly pass through its Flow Meter token bucket, as

expected: no frames are dropped. In that figure, time is

represented as the horizontal axis, green rectangles are frames

of F1 sent in the Talker1-SW link, and the saw-shaped curve

represents the amount of credits the Flow Meter for F1 deployed

in SW has.

F2 can also pass seamlessly through SW, and we can see from

Figure 7 (from RTaW-Pegase’s TraceInspector module) that the

distance between subsequent F2 frames is distributed around its

nominal period of 1 ms. The simulation of clock imprecisions

can explain the non-negligible width of that distribution.

Figure 6: Simulation results for the link Talker1-SW in the

Nominal case (capture from RTaW-Pegase).

Figure 7: Simulation for inter-frame distance distribution for

F2 in the SW-Listener link for the Nominal case (capture from

RTaW-Pegase).

Then, the hardware setup was tested and the frames received in

the Listener were captured to be later analyzed. Figure 8 shows

the distribution of distances between consecutive F2 frames, as

extracted using RTaW-Pegase’s TraceInspector module. No

significant jitter is observed in the reception times of F2 frames

at the Listener node.

Figure 8: Inter-frame distance distribution for F2, captured in

the hardware setup at the Listener. No jitters are observed.

4.2. Control Case Results

A simulation of 10 seconds was conducted for the Control case

using RTaW-Pegase and, as can be seen in Figure 9, one out of

every two F1 frames is dropped by the Flow Meter. This is

expected, since F1 breaches the specified contract for that frame

(𝐵̅1
′ > 𝐵̅1 and 𝐵1

′ > 𝐵1). F2 can pass seamlessly by the filters,

and we can see from Figure 10 that the distribution of the

distance between subsequent F2 frames is the same as in the

Nominal case.

Figure 9: Simulation results for the link Talker1-SW in the

Control case (frame drops represented as black Xs).

Figure 10: Simulation for inter-frame distance distribution for

F2 in the SW-Listener link for the Control case. The behavior

observed is similar to the Nominal case thanks to the filtering.

As shown in Figure 11, the hardware frame capture does not

reveal any noticeable effects associated with the Control case.

Figure 11: Inter-frame distance distribution for F2, captured in

the hardware setup at the Listener for the Control case. The

observed behavior matches the best-case scenario.

PSFP in TSN Networks: Insights into Some Practical Limitations

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 7

4.3. Faulty Case Results

A simulation of 10 seconds was conducted for the Faulty case

using RTaW-Pegase. Figure 12 shows that, although F1 does not

conform to the on-wire bandwidth contract (𝐵̅1
′′ > 𝐵̅1), the Flow

Meter is incapable of filtering the excess traffic, since 𝐵1
′′ < 𝐵1

due to the 20-byte overhead.

Figure 12: Simulation results for the link Talker1-SW in the

Faulty case.

Since the filter let through excess traffic, it can be seen from

Figure 13 that a significant jitter appears for F2. More than that,

the concentration of the distribution around the values of twice,

three times and four times the original period indicates

important frame losses: one for each 2 frames, 2 for each 3

frames and even 3 for each 4 frames.

Figure 13: Simulation for inter-frame distance distribution for

F2 in the SW-Listener link for the Faulty case.

The scenario observed in the simulation can be verified in the

data captured by the Listener in the hardware setup, as can be

seen in Figure 14.

Figure 14: Inter-frame distance distribution for F2, captured in

the hardware setup at the Listener for the Faulty case.

4.4. Results Discussion

Simulations and network trace captures have shown that Flow

Meters might protect from certain CBS non-conformities such

as the one modeled by the Control case. However, results from

the Faulty case demonstrate that Flow Meters alone cannot fully

safeguard the network against all classes of non-conforming

behaviors.

The inability to block excess bandwidth usage will have an

impact on every flow that shares the same CBS as the faulty

traffic, causing frame losses in the event of a “babbling idiot”

fault. Such scenario can occur in any network using CBSs

despite the use of Flow Meters to enforce their contract, unless

specific mitigation strategies are applied.

5. MITIGATION STRATEGIES

5.1. Mitigation with over-provisioning

Since the Flow Meter is inherently unable to fully enforce

bandwidth contracts, to avoid frame drops due to queue

saturation, mitigation necessarily relies on overprovisioning.

Therefore, if a CBS queue aggregates several flows and there is

a need to protect one flow from misbehaviors of others, relying

solely on per-flow metering via PSFP is insufficient. In such

cases, the CBS idleSlope must be increased to cope with such a

situation.

Figure 15 shows the required correction to be added to the

idleSlope of a CBS for each flow that passes through it, based

on the flow maximum message size (in SDU bytes). The

correction is derived from the following analytical expression,

where 𝑘 is the increase in the idleSlope and 𝐿 is the SDU

message size in bytes:

𝑘 = (
84

64
⋅

𝐿

𝐿 + 20
− 1) ⋅ 100%

Figure 15: Required idleSlope increase to prevent queue

saturation as a function of frame size (SDU bytes).

For example, if a CBS is configured at the output port of a switch

that aggregates three distinct flows 𝑋 , 𝑌 and 𝑍 , then in the

nominal case, the CBS’s idleSlope is set as:

𝑖𝑑𝑙𝑒𝑆𝑙𝑜𝑝𝑒𝑁𝑜𝑚𝑖𝑛𝑎𝑙 = 𝐵̅𝑋 + 𝐵̅𝑌 + 𝐵̅𝑍

But to protect frame 𝑋 from a “babbling idiot” fault of 𝑌 and 𝑍

simultaneously, the corrected idleSlope must satisfy the

following inequality:

𝑖𝑑𝑙𝑒𝑆𝑙𝑜𝑝𝑒𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 ≥ 𝐵̅𝑋 + (1 + 𝑘𝑌)𝐵̅𝑌 + (1 + 𝑘𝑍)𝐵̅𝑍

An analogous logic would apply for flows 𝑌 and 𝑍 . A safe

idleSlope value can then be chosen as the minimum value that

satisfies all three constraints simultaneously.

PSFP in TSN Networks: Insights into Some Practical Limitations

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 8

As illustrated in Figure 15, avoiding queue saturation in the

presence of a “babbling idiot” fault requires allocating

significantly more bandwidth to CBS-shaped traffic—even

when the frame size 𝐿 is relatively small. For instance, at 𝐿 =
200 bytes, approximately 20% more bandwidth is needed to

maintain safe operation. However, this overhead may be

acceptable in some scenarios, particularly as the deployment of

gigabit-class Ethernet links becomes more common.

5.2. Standard‑Level or Product Enhancements

While the mitigation strategy is limited, correction can be

achieved with minimal changes and could be implemented

either through updates to the standard or as extensions provided

by TSN switch manufacturers.

One first possible solution, inspired by AFDX, is to enforce a

minimum frame size per stream. Since many streams transmit

fixed-size frames, allowing PSFP to check for a stream-specific

minimum size would prevent overuse of transmission time on

the wire. Given that PSFP already supports maximum frame size

checks, this would be a relatively minor extension of its

capabilities. However, such an approach is not universally

applicable. For instance, in video streams, the application-level

data is often fragmented into multiple Ethernet frames, and there

is no guarantee regarding the size of the final fragment.

A second solution is to have PSFP account for the 20-byte media

overhead. Since CBS already includes this overhead in its

shaping calculations, the capability to consider it already exists

within the device. However, CBS operates at the output port,

whereas PSFP is applied at the ingress of the switch. Despite

this separation, it is worth noting that ATS—typically

implemented immediately after PSFP (see Fig. 8.13 in [2])—

does incorporate the media-specific overhead when computing

eligibility times, as specified in §8.6.5.6 of [2]. This suggests

that integrating similar awareness into PSFP is feasible and

aligned with existing TSN mechanisms.

In both cases, such evolutions can be made in the standard itself

or proposed as extensions by the hardware providers.

5.3. Mitigation in AFDX

AFDX also has policing elements based on token bucket, like

the PSFP meters. In AFDX, each flow must have its own token

bucket (whereas several flows can share the same PSFP in

TSN). But this token bucket takes into account the media

overhead (using the term “line size”), cf. § 4.1.1.1 and Figure 4-

2 in [8].1 Moreover, a minimal and maximal frame size must be

specified for each flow, and the amount of media overhead is

computed based on the minimal frame size. Frames with smaller

sizes are dropped. Lastly, AFDX may get rid of considering such

overhead by using a per-frame policing instead of a per-byte

policing, cf. § 4.1.1.3.

1 “The frame size value shown in Figure 4-2 corresponds to the actual

time a frame occupies the Ethernet line (s). Therefore, all fields must

5.4. Mitigation on TSN/ATS

We have shown in previous sections that PSFP is unable to

prevent a faulty or malicious switch from increasing the delays

at a downstream switch, leading to increased latencies or even

buffer overflows.

For ATS, the situation is slightly different. ATS shaping is based

on the computation of an eligibility time for each frame, and

each frame will be allowed to be transmitted only once that

timestamp is reached. Consider first the common case of per

stream ATS shaping, where each stream is individually policed

by PSFP

As with CBS, the PSFP meter cannot distinguish small frames

from big frames. Since the eligibility time calculation includes

the “media specific overhead” (cf. § 8.6.5.6 in [2]), sending

several small frames instead of one big one will create more

overhead and increases latency. But ATS shapers are organized

into groups, with one group per input port, that enforces a FIFO

behavior inside a group. Consequently, an increase in delay

affects all flows within the same group but not flows arriving

from other input ports. However, all ATS traffic within a given

class is enqueued into the same output queue. This means a

faulty or malicious switch, even if unable to delay traffic from

other sources, may still attempt to overflow the shared class

buffer. Fortunately ATS offers a counter-measure: the standard

defines a MaximumResidenceTime. Frames that exceed this

limit can be dropped. This mechanism allows the system to

discard excessively delayed frames—such as those affected by

small-frame overhead—thus helping to prevent buffer overflow.

6. CONCLUSION

Time-sensitive applications are using PSFP increasingly to

improve safety, but our evaluation shows that it cannot

guarantee complete protection from faults in all situations. We

found that a small 20-byte accounting mismatch in how frame

sizes are counted can let a data flow send up to 30% more traffic

than allowed. We also saw that the way CBS recovers its credit

after sending a burst can force network engineers to set much

higher burst allowances than should be needed, which makes

traffic control less accurate. Together, these issues can lead to

delays and buffer overflows, even in networks that are set up

correctly.

Still, PSFP remains a valuable tool for limiting the effects of

faults, if applied carefully. We have shown that problems can be

avoided by overprovisioning for CBS idleSlopes. Beyond that,

we propose practical improvements to the standard: (1) allowing

Flow Meters to account for the actual on-wire size, and (2)

checking frame sizes against a minimum allowed value, similar

to the existing maxSDUSize constraint. Both changes are

incremental, compatible with current systems, and preserve the

simplicity of PSFP design.

Looking forward, we believe that emerging traffic shaping

mechanisms such as ATS hold promise for reducing or

be considered: IPG (12 octets) + Preamble (8 octets) + MAC Frame

size (L = 64 to 1518 octets).”

PSFP in TSN Networks: Insights into Some Practical Limitations

European Congress of Embedded Real Time Systems, ISSN 2680-0918, 2026 9

eliminating the need for oversized buffers. However, combining

ATS with PSFP and ensuring robust performance across diverse

traffic patterns remains a complex challenge and an area for

future investigation.

We hope that network engineers, tool developers, and

standardization bodies will find these observations useful to

refine existing mechanisms, and validate behavior through real-

world deployments to advance TSN reliability and fault-

tolerance.

REFERENCES

[1] M. Boyer, “Usage of TSN Per-Stream Filtering and

Policing,” hal-04159172v2, 2023.

[2] IEEE Standards Association, 802.1Q - IEEE Standard for

Local and Metropolitan Area Networks--Bridges and

Bridged Networks, 2022.

[3] C. Xue, T. Zhang, Y. Zhou, M. Nixon, A. Loveless and S.

Han, “Real-Time Scheduling for 802.1Qbv Time-Sensitive

Networking (TSN): A Systematic Review and

Experimental Study,” in IEEE 30th Real-Time and

Embedded Technology and Applications Symposium

(RTAS), Hong Kong, 2024.

[4] T. Stüber, L. Osswald, S. Lindner and M. Menth, “A

Survey of Scheduling Algorithms for the Time-Aware

Shaper in Time-Sensitive Networking (TSN),” IEEE

Access, 2023.

[5] J. Adrià Ruiz De Azua and M. Boyer, “Complete modelling

of AVB in Network Calculus Framework,” in 22nd

International Conference on Real-Time Networks and

Systems (RTNS 2014) , Versaille, 2014.

[6] J. Migge, J. Villanueva, N. Navet and M. Boyer, “"Insights

on the Performance and Configuration of AVB and TSN in

Automotive Ethernet Networks",” in 9th European

Congress on Embedded Real Time Software and Systems

(ERTS 2018), Toulouse, 2018.

[7] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte and M. Boyer,

“Latency Analysis of Multiple Classes of AVB Traffic in

TSN With Standard Credit Behavior Using Network

Calculus,” IEEE Transactions on Industrial Electronics,

2021.

[8] Aeronautical Radio, Inc. (ARINC), “Aircraft Data

Network, Part 7: Avionics Full-Duplex Switched Ethernet

Network, ARINC Specification 664P7-1,” 2009.

