

Validate Your Timing Constraints
Before Writing

A Single Line Of Code

Key Features

- Enable the modeling of real-time software running on processors as tasks communicating via messages and signals, locally or over a communication network,
- Offer timing-accurate simulation and worst-case response time analysis for software functions, network transmissions, and sensor-to-actuator timing chains,
- Provide firm guarantees that processor loads remain within budget and task timing constraints are met,
- Enable proper buffer sizing to prevent message losses,
- Support Service-Oriented Architectures (SOME/IP, DDS, MQTT) and ensure services are consistently delivered on time,
- Support Real-Time Scheduling for AUTOSAR and POSIX Environments,
- Support for modern high-performance computer models with hypervisors,
- Quantify system extensibility in terms of spare processor capacity and the number of additional functions and services the architecture can support,
- Explore architectural and technological design options on models, enabling performance- and cost-driven design choices early in the design,
- Leverage Pegase's networking modules for comprehensive system-level verification for distributed functions.

System-level and Multilayer Modeling

Supports AUTOSAR and Non-AUTOSAR Platforms

DDS, SOME/IP and MQTT Service-Oriented Architectures

Support of CAN (FD, XL), Ethernet, LIN, FlexRay, Wireless, and Heterogeneous Networks

Get in touch with our experts now!

Ask for demo or a free evaluation period

System-Level Modeling

- Enable the modeling of software tasks communicating through messages and signals, locally or over a communication network.
- Support industry standard file formats (e.g. AUTOSAR .arxml) to fit into the overall design flow,
- Allow modeling of system-level timing chains—such as those between sensors and actuators—across processors and networks in the embedded system,
- Support design choices in terms of tasks allocation to hypervisors, cores and processors, scheduling policy and task activation patterns.

Evaluation and Visualization

- Prove correct timing behavior with simulations and worst-case analysis of software functions, network transmissions, and system-level timing chains,
- Ensure optimal performance with guaranteed CPU load compliance,
- Gain insights into complex timing behavior with rich, intuitive visualizations including Gantt charts, load graphs, and histograms.

System-Level Configuration

Seamlessly describe and model all the system timing constraints — from application-level deadlines to communication delays — directly within the architecture model.

Advanced algorithms automatically validate, adjust, and optimize system design choices (e.g. tasks offsets and priorities) to ensure full compliance with all defined timing constraints.

contact@realtimeatwork.com www.realtimeatwork.com RTaW-Pegase® module SDV Version 2025.05