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1  I n t roduct i on  

Avionics functions are nowadays implemented by real-time applications, running on shared 
computers and communicating with each other. The real-time constraints typically associated 
with local applicative tasks now extend to the communication networks between 
sensors/actuators and computers, and between the computers themselves. Once a 
communication medium is shared (like an AFDX backbone), the time between sending and 
receiving a message not only depends on the technological constraints, but mainly on the 
interactions between the different streams of data sharing the medium. 

It is therefore necessary to have techniques and tools to guarantee, in addition to local 
scheduling requirements, the worst case traversal time of the network (WCTT) and thus ensure a 
correct global real-time behavior of the distributed applications/functions. The network calculus 
is an active research area [Chang00, LeBoudec01] based on the (min,+) algebra [Baccelli92], 
that has been developed to compute such guaranteed bounds. They already exists several 
academics implementations (see [Boyer10b] for an overview), but no up to date industrial 
implementation.  To address this need, the PEGASE project gathers academics and industrial 
partners to provide a high quality, efficient and safe tool for the design of avionic networks using 
worst case performance guarantees. 

The PEGASE software is an up-to-date software in the sense that it integrates the latest results of 
the theories, in tight cooperation with academics researchers. The PEGASE software is also a 
safe tool: it relies on a strong mathematical background, its algorithms are described in a formal 
document, and it shares unitary tests with some academics tools. The PEGASE software is a 
usable tool: in particular, it has been designed from the requirements expressed by embedded 
network engineers. Finally, the PEGASE software is an efficient tool: it provides bounds close to 
the actual real worst-case, avoiding over provisioning of resources.  

This paper presents the mathematical background of the tool, its architecture and some first 
results on realistic case studies. 

1.1  The AFDX network 

The AFDX technology (Avionics Full-Duplex Switched Ethernet, ARINC 664 standard part 7 
[AFDX]) is an embedded network that is based on the Ethernet technology. If standard Ethernet 
offers a large bandwidth, it su ffers from well-know indeterminism that rules out its use in real-
time systems. On AFDX, each node, termed an end-system, is connected to a communication 
switch with full-duplex links: there cannot be any collision on the links, but indeterminism may still 
arise from the waiting times in the queues of the AFDX switches. However, as on an AFDX 
network it is imposed that the amount of frames to be sent by the nodes over a given time 
interval is always bounded, it becomes possible to compute the worst-case transmission delay for 
a frame from the source to the destination(s). This delay, also called the Worst-Case Traversal 
Time, must be upper-bounded as explained in next paragraph.  

1.2  Worst-Case Traversal Time (WCTT) evaluation:  an industr ial  requirement 

With the increasing amount of critical data exchanged with real-time constraints in on-board 
aerospace systems, the computation of tight upper bounds on network traversal times is 
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becoming a real industrial need. The reason is twofold. First, a tight and safe dimensioning of the 
hardware and software architecture is necessary. Second, it is required in the certification 
process to convince the certification authorities that the real-time and safety constraints are 
met. Indeed, Network Calculus [Chang00,LeBoudec01] has already been used for almost the last 
10 years for WCTT evaluation, for instance, to dimension and certify the AFDX network of the 
A380  (see, for instance, [Grieu04,Frances06]). 

1.3  The Pegase project 

The French PEGASE project [Pegase10], partially funded by the Agence National de la Recherche 
(ANR), gathers academics (ENS, INRIA, ONERA) and industrial partners (Thales R&T, Thales 
Avionics, Thales Aliena Space, RealTime-at-Work) from the aerospace field. It has been 
undertaken to improve some key aspects of the Network Calculus [Chang00,LeBoudec01] and its 
implementation, in order to meet increasing requirements in terms of accuracy of the temporal 
evaluation and size of the systems that are to be studied. Ultimately, the objective is to come up 
with the techniques and the tools that enable the OEM  to dimension an on-board system in the 
tightest manner (i.e. no over-dimensioning) while providing the necessary safety guarantees.  
To assess the gains achieved and the practicality of the software tool in an industrial context, 3 
case-studies have been undertaken respectively on AFDX [AFDX09], SpaceWire [SpW08] and a 
NoC. This paper focuses on the use of the PEGASE software tool for the design and validation of 
the AFDX networks. 

1.4  Aims of the PEGASE software tool and its  use-cases 

The software tool should be versatile in the sense that ultimately it should be usable for research, 
design as well as certification (by OEMs). These different use-cases imply different requirements 
from different users. For instance, academics working on the NC theory would want to be able to 
get access to specific intermediate results that are not needed, and even could be detrimental, 
when conceiving the networking architecture by design space exploration. On the other hand, 
proving the correctness of the WCTT results in the certification process might require other 
kinds of intermediate results to be available. 
However, the various functionalities and facets of the software are all based on the solid 
mathematical foundation that is provided by the NC theory (see section 2). Also, the tool is up-to-
date in the sense that, to the best of our knowledge, it implements the latest NC theoretical 
results. For instance, the tool is able to deal with the so-called ultimately pseudo-periodic (UPP) 
work arrival functions [Bouillard08], which significantly increases the modeling power and the 
accuracy of the WCTT results with regard to previous implementations (see Section 4). Being as 
accurate as possible in the WCTT results is indeed a primary objective of the tool because it has 
an immediate impact on the architectural complexity and its costs, and thus on the industrial 
competitively of the developed solutions. 
Finally, the tool has been developed with usability in mind. In particular, it includes a graphical 
user interface (see figures 6 and 7) which allows to set and modify the configurations under 
study, visualize the results and compare among alternative design choices. 
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2  Mathemat ica l  foundat ions  o f  WCTT :  the  Network  Ca lcu lus  

Network Calculus is a mathematical theory designed to compute upper bounds on communication 
delays and memory usage in networks. It had been successfully used to certify the Airbus A380 
AFDX backbone [Grieu04,Frances06]. Here is only a short overview of the method and its benefits 
in the context of critical embedded systems. 

2.1  Network Calculus:  history and a recap 

The aim is here to provide a general overview of NC, without too many technicalities. The 
interested reader can refer to [LeBoudec01, Chang00, Boyer10a]. 
The Network Calculus (NC) theory has been conceived to compute worst case performances of 
networks, i.e. worst delays and worst buffers usage (also known as backlog). The first studies 
[Cruz91a,Cruz91b] were a generalization of common scheduling theories, considering the general 
notion of  arrival curve to describe the inputs of a system, instead of the classical “periodic task” 
model.  But the main originality of network calculus, developed from the middle to the end of the 
90's, is the parallel made with the filtering theory and the (min,+) algebra [Baccelli92]. Today, 
network calculus [LeBoudec01,Chang01] is a theory supported by a formal mathematical 
framework: the (min,+) algebra.  
In few words, network calculus handles two kinds of system objects: flows and servers. A flow is 
modeled by its cumulative function R(t), which represents the total amount of data produced by 
the flow from time 0 up to time t. A server S transforms an input flow R into an output flow R', 
with R≥R', meaning that the departure time of any bit occurs after its arrival. Such a server does 

not create any data, neither looses any.  
The backlog at time t is b(t)=R(t)-R'(t), that is the amount of data that has entered into the server 

and not gone away yet. The delay at time t is d(t)=inf{ τ |  R'(t) ≤ R(t+ τ) } as presented in Figure 1 . 

The worst backlog and the worst delay can be defined as the maximum backlog and delay for all t. 
There are formally known as vertical and horizontal deviations, v(R,R') and h(R,R'). 
 
 
 
 
 
 
 
 
 
 
 
 
But the real flows R and R' are unknown at design time (they may depend on external events, 
jitters, varying execution times, etc.). So, network calculus has to compute the bounds based on 
some safe traffic and service assumptions. In particular it is said that a flow R has an arrival 

curve α(t) if and only if ∀ t,w≥0, R(t+w)-R(t)≤ α(w), meaning that, on any interval of duration w, at 

most α(w) data are emitted by flow R . The link between (min,+) algebra and network calculus 

appears when noticing that this condition is equivalent to R ≤ α*R, where * denotes the 

convolution in the (min,+) algebra. In a similar manner, a server offers a simple service of curve β 

iff, for all input flow R, the output flow R' satisfies R' ≥ R *  β. 

 
Figure 1: Horizontal and vertical deviation 
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With these hypotheses, the network calculus ensures that the worst delay experienced by the 

flows R in the server S is bounded by h(α , β), while the worst backlog is bounded by v(α , β). 
Moreover, the computation can be propagated, because the theory also gives an arrival curve for 

the outputs flow, R':  α '= α ÷  β, where ÷ denotes the (min,+) deconvolution. 

A formal mathematical background also permits to benefit from the general properties of 
mathematical operators, like commutativity, associativity, monotony, etc. And these properties 

are of practical interest. For example, if α is an arrival curve for a flow R, any function α ' ≥ α also 

is an arrival curve for the flow R, and the symmetric holds for service curve. 
 
 

 
 
 
 
 
 
 
 

A famous result of network calculus, known as “pay burst only once”, comes from this 
mathematical framework: if a flow R goes through a sequence of two servers, S and S' (cf 

Illustration 2), providing respectively service curves β and β' , then, the system is identical to a 

flow crossing a single server S;S' (where ; is a composition operator) offering a service curve 

β * β' .  
This allows to compute an end-to-end delay, h(α , β * β') smaller than the sum of the local delays. 

An interpretation of this result is the following: when considering a bursty flow, at a given instant, 
the burst can be either in S, either in S', or partially in S and partially in S' , but not in both S and 
S' . Then, the worst delay for S occurs when the burst is in S, the same holds for S', but the global 
worst case is not the sum of individual worst cases. But going from an intuition to a formal result 
can be a difficult task. Here, the formal framework, ensuring associativity and commutativity, 
gives a simple and elegant proof. 

R'' ≥ R' * β ' ≥ (R * β) * β'   = R * (β * β') 
Network calculus also offers results on shared servers, with several policies (First In First Out – 
FIFO ; Static Priority – SP ; paquetization ; Weighted Fair Queuing – WFQ). Depending on the 
case, network calculus can compute the exact worst case, or only upper (safe) approximations. 

2.2  A formal framework providing f lexibi l ity and confidence in the results 

One great benefit of the very general framework of network calculus is the built-in ability to model 
heterogeneous systems, and make safe approximations. It is not related to some periodic task 
model, as often in real-time systems, with subtle differences between models (offsets, periodic, 
sporadic, etc). In network calculus, such differences are modeled by different arrivals and/or 
service curves, which all belong to the same framework. For example, a sporadic flow with 
packets of size l and inter-arrival T can be modeled by a staircase arrival curve. The sum of two 
such flows gives a complex periodic arrival curve, with a period equal to the least common 
multiple of the flows. But network calculus allows to model it in a less precise manner, with an 
affine curve, as depicted in Illustration 3. Because of the monotony of the underlying 
mathematical operators, this kind of approximation is safe. Of course, going from staircase 
functions to linear ones is just an example. Nevertheless the same principle can be applied to non 
trivial classes of curves. However, there is no free lunch, a simple modeling will require less 

S

R’

S’

R R’’

S’’

Figure 2: Pay Burst Only Once 
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computation time but, in general, will also lead to less accurate results. Nevertheless, one can 
switch from one model to another, depending on the needs, while staying within the same formal 
framework. 
 

 
 
Network calculus also makes a very clear distinction between the formal world and the real world. 
As presented in Illustration 4, the principle of formal method is the following: considering a real 

system Σ, and a property P, the user models the system and creates an object M (the model of Σ) 

in a formal theory, and write an expression Φ (often called property also), such that, if the formal 

method is able to prove Φ from M, then P holds in Σ. The work of the modeler is to build M and Φ  

from Σ and P. The work of the theoretician is to build a formal theory which allows this modeling 

and which provides efficient tools to deduce (or refute) Φ from M. Of course, the modeling 

(arrows 1,3) must be done carefully, but the deduction (2) is robust. In less formal methods, such 
as some real-time scheduling analyses,  there often is some implicit assumptions, some 
conditions hard to model in the theory, and used in proofs, like “is is clear that the worst case 
appears when...” or  “since such behavior cannot occur...”, as illustrated by arrow (5). In network 
calculus, the formal theory is clear: it is the (min,+) algebra. 
 
 
 
 
 
 
 
 
 
 

Figure 4: Use of formal theories 

Figure 3: Safe approximation, from stair-case to linear function 
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3  Descr ipt ion  o f  the  PEGASE tempora l  eva luat ion  too l  

The complexity of the targeted systems and of the verification methods imposes the usage of a 
software tool. But the development of a software tool that implements new mathematical 
methods and that satisfies the practicability requirements of an industrial context requires 
preliminary exploratory work and proofs of feasibility. Furthermore, researchers need tools that 
allow them to evaluate the relevance of the theoretical findings through concrete computations 
on industrial case-studies. For this reason, a prototype is being developed during the project and 
it is expected to facilitate a rapid transfer of the outcomes of the project to the industry. 

3.1  Requirements on the tool  

The practicability of such a tool in an industrial context depends on several aspects: 
o acceptance by the certification authorities, 
o contained computation time to obtain the results, 
o domain-specific support for creating system descriptions that helps to avoid modeling 

errors,  
o ease of understanding and visualization of the analysis and optimization results. 

The usefulness of such a tool in an academic context depends on two main aspects: 
o models that are as general as possible - even if it is to the detriment of raw performance,  
o extendibility that enables exploratory work. 

Because of such sometimes conflicting requirements, the tool has been designed in a modular 
way, as presented in next subsection. In a certain extent, the PEGASE tool can be seen as a 
modular framework, with different sub-tools, having different sub-goals, linked together by a 
common theoretical and implementation framework, as presented in the next paragraph. 

3.2  Architecture of the tool 

Different users will give different importance to different requirements. Thus, the design allows to 
have different implementations for different users.  
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Figure 5: Components of the prototype (UML notations) 

 
As an example, let us consider the MinPlus Library component. Network Calculus uses (min,+)-
algebra operations whose complexity is strongly dependent on the considered class of arrival and 
service curves. The more specific the class of curves are (sufficient for industrial applications or 
coarse-grained results), the lower the complexity2, while the more general the class of curves (as 
needed for research), the higher the complexity.  For example, the first works on NC [Cruz91a] 

were only using affine curves (like shown in Figure 3), where * and ÷  can be computed in 

constant time and less than ten lines of code. A very general class of piece-wise affine functions, 
called Ultimately Pseudo Periodic or UPP for short, has been studied in [Bouillard08]. These UPP 
functions require complex and computationally intensive algorithms to work with, while the simple 
concave piece-wise affine functions (that belong to the ICC class, for Increasing Convex or 
Concave) involve only linear algorithms (see [Boyer08]).  
In PEGASE, both ICC and UPP have been developed; using either floating points or exact rational 
numbers, and the user is free to choose the MinPlus Library component that best suits its needs.  
Table1 gives, for each module, the lines of code (LOC), the complexity (measured by the 
cyclomatic complexity), the number of methods and the ratio complexity/methods. 
 

Module #Lines of code Complexity 

(Cyclomatic) 

#Methods Cplx/#Methods 

Fraction 816 268 73 3.67 

Double 84 32 24 1.33 

ICC 1292 318 74 4.3 

UPP 3416 719 106 6.8 

Table 1: Size and complexity of the implementation. The code shared by all modules is not 
indicated here: it represents 2062 lines of code, 101 methods for a complexity equal to 504. 

Cyclomatic complexity is a software metric that indicates the complexity of a program by 
measuring the number of paths in the source code.  

At the time of writing, all modules are operational and their core features have been validated. 
The features needed for the most advanced use-cases are currently conceived and implemented. 
                                                           
2 Complexity should be understood here with two meanings: computational cost and implementation cost. A simple 
class of functions can have low computational cost (l inear) and be a good choice in a coarse design phase, while, at a 
later stage of design, a more general class leading to more precise results can be a better choice.  
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For instance, we are developing a design space exploration module that will help the OEM to 
optimize the design choices regarding the topology, routing and allocation of the functions.  

3.3  The Network Editor 

The code of the GUI is mainly not hand-written but generated from a high-level specification in 
UML with RTaW-Generator (see [RTaW08]). This was especially useful at the beginning of the 
development process, when the interactions with the users lead to frequent modifications. 
Another interest is that the code quality is ensured by the generator, which has been validated on 
several large projects.  

 

 
Figure 6: Topology of the AFDX network. The gray boxes are the switches while the end 
systems are the white boxes. The names of the virtual links are shown as labels of the 
physical links. 

The GUI gives the user access to the whole system description, in order to visualize or set 
parameter values concerning the topology of the networks, the characteristics of the switches 
and virtual links, etc. As explained in §3.2, not all users will need to run the computations in the 
same manner, therefore the desired tradeoff between speed and accuracy can be chosen 
through the GUI. The tool can not only be used in an interactive manner, computations can be run 
through scripts. 
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Figure 7: results panel showing the computed Worst-Case Traversal Times, where red 
means that the time constraint cannot be guaranteed for a given virtual link. 

3.4  Tool validat ion 

Java has been chosen as programming language for its lower risk for programming errors 
Furthermore continuous integration with frequent releases is performed in order to get rapid 
feedback from the academic and industrial partners. Given the safety requirements of the 
application domain, a particular effort is put on the validation of the code: 

o Numerous unit tests of the different components of the tools with the mandatory 
objective of 100% of source code coverage, 

o Static analysis of the source code with the tool SONAR, with the objective to remove all 
identified warnings,   

o Extensive automated comparison tests with the Network Calculus tool NC-maude 
[Boyer10b]. 

4  Per fo rmance  eva luat i on  

4.1  System setup 

The performances of the algorithms and their implementation in the tool have been evaluated on 
an industrial size example provided by Thales Avionics. The following table summarizes the main 
characteristics of the modeled communication system. 
 

Entities Number  

End Systems 104 

Routers 8 

Virtual Links 974 
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Latency constraints 6501 

 
As can be seen in the following table, each Virtual Link (VL) has on average 6 destination end 
systems. This explains the 6501 latency constraints shown in the first table, which means also 
that 6501 WCTT bounds need to be computed. 
  

 Virtual Link 

destinations 

BAG (minimum 

interarrival 

time) 

Maximal 

Packet Size 

Traversed 

Routers 

Latency  

Constraints 

minimum 1.0 2 ms 100 bytes 1 1000 µs 

average 6.6 60 ms 380 bytes 1.3 10040 µs 

maximum 84.0 128 ms 1500 bytes 4 30000 µs 

4.2  WCTT evaluation algorithms and their running times 

Bounds on WCTT have been computed with two different kinds of initial arrival curves, with two 
different numerical types and with two different function types. The following table summarizes 
the advantages and disadvantages of these analysis options. 
 

  Advantages Disadvantages 

Number 

type 

Floating 

point 

Faster execution of min-plus 
operations. 

Rounding errors and 
incompatibility with UPP function 
class. 

Fraction No rounding errors and 
compatibility with all function 
classes. 

Slower execution of min-plus 
operations. 

Function 

class 

ICC Implementation of min-plus 
operations are less complex and 
thus their execution is faster 

Tighter stair case arrival 
functions cannot be represented 
and thus bounds on WCTTs are 
larger. 

UPP Tighter stair case arrival functions 
can be represented and thus 
bounds on WCTTs are tighter. 

Implementation of min-plus 
operation much more complex 
and thus their execution is 
slower. 

Initial 

arrival 

function 

kind 

Token 

bucket 

Simple structure which is 
compatible with all function 
classes.  

Looser arrival function which 
leads to larger bounds on WCTT. 

Stair 

case 

Complex structure that is not 
compatible with all function 
classes. Can only be handled with 
UPP functions. 

Tighter arrival function which 
leads to tighter bounds on WCTT. 

 
The following table shows the duration of the WCTT calculations for all possible configurations 
combinations3. 
 

                                                           
3 Experimentations have been run on a 2.5Ghz Intel processor running under a 64 bits- Linux, with 
the Sun/Oracle 1.6.0_24 java machine. 
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Configuration 

number 

Initial arrival 

function 

Number type Function class Duration of WCTT 

computations 

1 Token bucket Double ICC 2 s 

2 Token bucket Fraction ICC 11 s 

3 Token bucket Fraction UPP 19 s 

4 Stair case Fraction UPP 33 mn 

 
From the computation time point of view, as expected, the calculations are much faster: 

o if based on floating points instead of fractions,  
o if based on the ICC function class instead of the UPP function class, 
o if based on token-bucket arrival-functions instead of stair-case arrival functions.  

4.3  Results accuracy 

The tightness of the calculated bounds behaves in principle exactly in the opposite of the running 
time, but differences in accuracy might be in some cases negligible or null.  For instance, 
changing only the numbers representation from fraction to double, while keeping the ICC function 
class and the token-bucket arrival function, lead to negligible differences (below µs level) in the 
case of the studied real-world sample system (configurations 1 and 2).  As expected, changing 
only the function class (ICC or UPP), while keeping the initial arrival function and the number 
representation identical leads to identical results (configurations 2 and 3).  
 
However, changing the initial arrival function to stair-case, produces significantly tighter bounds, 
with improvements ranging from 0% up to 20%, and an average gain equal to 6%. As can be seen 
in Figure 8 where the computed WCTT bounds of the virtual links are sorted in increasing order 
their values, improvements are basically proportional to the bounds. 
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Figure 8: Worst-Case network Traversal Times obtained with Tocken Bucket and Stair Case modeling of the 
input traffic. 

The priority of the VLs is one the factors that influences the gain achieved with the stair case 
input traffic model. On Figures 6 and 7, one observes that the lower the priority, the higher the 
improvement brought by stair-case: 0.38% of average improvement for the highest priority VLs 
versus 12.5% for the lowest priority VLs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The same analysis can be done for the length of the VL path (i.e. the number of switches between 
sender and receiver). As can be seen on Figures 8 and 9, the conclusion is that the longer the 
path, the higher the improvement: 5.7% of average improvement for paths of length 1 versus 
7.3% for paths of length 3. 
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Figure 9: WCTT of higher priority VLs 
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Figure 10: WCTT of lower priority VLs 
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Figure 11: WCTT of VLs crossing 1 switch 
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Figure 12: WCTT of VLs crossing 3 switches 
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5  Conc lus ions  and  fu ture  work  

For the last 10 years, Network Calculus has proven to be a powerful formalism that is well suited 
to provide guarantees on the worst-case performances of large critical embedded systems, such 
as airplanes. Thanks to recent theoretical and algorithmic improvements, such as the ones that 
are being obtained in the Pegase project, it becomes possible to achieve significant gains in 
accuracy, reducing thus the over-provisioning of resources, and provide better support for design 
space exploration techniques.  
One of the main objectives of the Pegase project is to come up with a practical and efficient 
software tool suited for both research and industrial use at different steps of the design. The 
features that allow the basic use-cases of the tool have been implemented and successfully 
tested on realistic case-studies. Our ongoing work is to implement more complex use-cases, 
related to design optimization, and benchmark our algorithms against other techniques such as 
the trajectory based approach [Martin04]. Also, we believe there are other classes of functions 
that may have the necessary power for modeling avionics systems without the complexity of the 
most general UPP class. 

6  Re ferences  

[AFDX09] AEEC, “Arinc 664p7-1aircraft data network, part 7, avionics full-duplex switched 
Ethernet network”.  Airlines Electronic Engineering Committee, September 2009. 
[Baccelli92] Francois Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat, 
“Synchronization and Linearity: An Algebra for Discrete Event Systems”, volume ISBN; 978-
0471936091. John Wiley and Son, 1992. http://cermics.enpc.fr/ cohen-g//SED/book-
online.html. 
[Bouillard08], Anne Bouillard, Éric Thierry, “An Algorithmic Toolbox for Network Calculus”, 
Journal of Discrete Event Dynamic Systems, Vol. 18(1), pages 3-49, 2008 
[Boyer08] Marc Boyer and Christian Fraboul. Tightening end to end delay upper bound for AFDX 
network with rate latency FCFS servers using network calculus. In Proc. of the 7th IEEE Int. 
Workshop on Factory Communication Systems Communication in Automation (WFCS 2008), 
pages 11-20. IEEE industrial Electrony Society, May 21-23 2008. 
[Boyer10a] Marc Boyer. Half-modeling of shaping in FIFO net with network calculus. In Proc. of 
the 18th International Conference on Real-Time and Network Systems (RTNS 2010) , Toulouse, 
France, November 4-5 2010. 
[Boyer10b] Marc Boyer. NC-maude: a rewriting tool to play with network calculus. In T. Margaria 
and B. Stepen, editors, Proceedings of the 4th International Symposium On Leveraging 
Applications of Formal Methods, Verication and Validation (ISoLA 2010) , LNCS. Springer, 2010. 
[Chang00] Cheng-Shang Chang. Performance Guarantees in communication networks. 
Telecommunication Networks and Computer Systems. Springer, 2000. 
[Cruz91a] Rene L. Cruz. A calculus for network delay, part I: Network elements in isolation. IEEE 
Transactions on information theory ,37(1):114-131, January 1991. 
[Cruz91b] Rene L. Cruz. A calculus for network delay, part II: Network analysis. IEEE Transactions 
on information theory , 37(1):132-141, January 1991. 
[Frances06] Fabrice Frances, Christian Fraboul, and Jerôme Grieu. Using network calculus to 
optimize AFDX network. In Proceeding of the 3thd European congress on Embedded Real Time 
Software (ERTS06), Toulouse, January 2006. 



 

 
©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS 

  
  15/15 

[Grieu04] Jerôme Grieu. Analyse et évaluation de techniques de commutation Ethernet pour 
l'interconnexion des systèmes avioniques . PhD thesis, Institut National Polytechnique de Toulouse 
(INPT), Toulouse, Juin 2004. 
[LeBoudec01] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus , volume 2050 of 
LNCS, Springer Verlag, 2001. 
[Martin04] Steven Martin, Pascale Minet, Laurent George, “The trajectory  approach for the end-
to-end response times with non-preemptive FP/EDF*”, Proceedings of the Int. Conf. on Software 
Engineering Research and Applications (SERA’04). Volume 3647 of LNCS., Springer, 2004. 
[Pegase10] M. Boyer, PEGASE project home page. http://sites.onera.fr/pegase, 2010. 
[RTaW10] RealTime-at-Work, “Minplus-Console: a (Min,+) algebra interpreter for Network 
Calculus”, available for downloadable at url: http://www.realtimeatwork.com/downloads/. 
[RTaW08] RealTime-at-Work, “RTaW-Generator: code and GUI generation from UML 
specifications”, see: http://www.realtimeatwork.com/software/rtaw-generator/, 2008. 
[SpW08] ECSS, “Spacewire – links, nodes, routers and networks”, ECSS-E-ST-50-12C, European 
cooperation for space standardization (ECSS), ESA-ESTEC, Requirements & standards division, 
July 2008.  
 
 
 
 
 


