

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 1/15

PEGASE – a robust and efficient tool for worst-case network

traversal time evaluation on AFDX1

Authors :

Marc Boyer – ONERA, The French Aerospace Lab – F31055 Toulouse
Jörn Migge – RealTime-at-Work – F54600 Villers-lès-Nancy

Marc Fumey – Thales Avionics – F31100 Toulouse
Date : 06/06/2011

Document id : technical report based a paper to be presented at SAE Aerotech 2011.
Contact author: Marc.Boyer@onera.fr

1 Introduction 2

1.1 The AFDX network 2

1.2 Worst-Case Traversal Time (WCTT) evaluation: an industrial requirement 2

1.3 The Pegase project 3

1.4 Aims of the PEGASE software tool and its use-cases 3

2 Mathematical foundations of WCTT: the Network Calculus 4

2.1 Network Calculus: history and a recap 4

2.2 A formal framework providing flexibility and confidence in the results .. 5

3 Description of the PEGASE temporal evaluation tool 7

3.1 Requirements on the tool 7

3.2 Architecture of the tool 7

3.3 The Network Editor 9

3.4 Tool validation 10

4 Performance evaluation 10

4.1 System setup 10

4.2 WCTT evaluation algorithms and their running times 11

4.3 Results accuracy.. 12

5 Conclusions and future work 14

6 References 14

1 This work has been partially funded by French ANR agency under project id ANR-09-SEGI-009.

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 2/15

1 I n t roduct i on

Avionics functions are nowadays implemented by real-time applications, running on shared
computers and communicating with each other. The real-time constraints typically associated
with local applicative tasks now extend to the communication networks between
sensors/actuators and computers, and between the computers themselves. Once a
communication medium is shared (like an AFDX backbone), the time between sending and
receiving a message not only depends on the technological constraints, but mainly on the
interactions between the different streams of data sharing the medium.

It is therefore necessary to have techniques and tools to guarantee, in addition to local
scheduling requirements, the worst case traversal time of the network (WCTT) and thus ensure a
correct global real-time behavior of the distributed applications/functions. The network calculus
is an active research area [Chang00, LeBoudec01] based on the (min,+) algebra [Baccelli92],
that has been developed to compute such guaranteed bounds. They already exists several
academics implementations (see [Boyer10b] for an overview), but no up to date industrial
implementation. To address this need, the PEGASE project gathers academics and industrial
partners to provide a high quality, efficient and safe tool for the design of avionic networks using
worst case performance guarantees.

The PEGASE software is an up-to-date software in the sense that it integrates the latest results of
the theories, in tight cooperation with academics researchers. The PEGASE software is also a
safe tool: it relies on a strong mathematical background, its algorithms are described in a formal
document, and it shares unitary tests with some academics tools. The PEGASE software is a
usable tool: in particular, it has been designed from the requirements expressed by embedded
network engineers. Finally, the PEGASE software is an efficient tool: it provides bounds close to
the actual real worst-case, avoiding over provisioning of resources.

This paper presents the mathematical background of the tool, its architecture and some first
results on realistic case studies.

1.1 The AFDX network

The AFDX technology (Avionics Full-Duplex Switched Ethernet, ARINC 664 standard part 7
[AFDX]) is an embedded network that is based on the Ethernet technology. If standard Ethernet
offers a large bandwidth, it su ffers from well-know indeterminism that rules out its use in real-
time systems. On AFDX, each node, termed an end-system, is connected to a communication
switch with full-duplex links: there cannot be any collision on the links, but indeterminism may still
arise from the waiting times in the queues of the AFDX switches. However, as on an AFDX
network it is imposed that the amount of frames to be sent by the nodes over a given time
interval is always bounded, it becomes possible to compute the worst-case transmission delay for
a frame from the source to the destination(s). This delay, also called the Worst-Case Traversal
Time, must be upper-bounded as explained in next paragraph.

1.2 Worst-Case Traversal Time (WCTT) evaluation: an industr ial requirement

With the increasing amount of critical data exchanged with real-time constraints in on-board
aerospace systems, the computation of tight upper bounds on network traversal times is

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 3/15

becoming a real industrial need. The reason is twofold. First, a tight and safe dimensioning of the
hardware and software architecture is necessary. Second, it is required in the certification
process to convince the certification authorities that the real-time and safety constraints are
met. Indeed, Network Calculus [Chang00,LeBoudec01] has already been used for almost the last
10 years for WCTT evaluation, for instance, to dimension and certify the AFDX network of the
A380 (see, for instance, [Grieu04,Frances06]).

1.3 The Pegase project

The French PEGASE project [Pegase10], partially funded by the Agence National de la Recherche
(ANR), gathers academics (ENS, INRIA, ONERA) and industrial partners (Thales R&T, Thales
Avionics, Thales Aliena Space, RealTime-at-Work) from the aerospace field. It has been
undertaken to improve some key aspects of the Network Calculus [Chang00,LeBoudec01] and its
implementation, in order to meet increasing requirements in terms of accuracy of the temporal
evaluation and size of the systems that are to be studied. Ultimately, the objective is to come up
with the techniques and the tools that enable the OEM to dimension an on-board system in the
tightest manner (i.e. no over-dimensioning) while providing the necessary safety guarantees.
To assess the gains achieved and the practicality of the software tool in an industrial context, 3
case-studies have been undertaken respectively on AFDX [AFDX09], SpaceWire [SpW08] and a
NoC. This paper focuses on the use of the PEGASE software tool for the design and validation of
the AFDX networks.

1.4 Aims of the PEGASE software tool and its use-cases

The software tool should be versatile in the sense that ultimately it should be usable for research,
design as well as certification (by OEMs). These different use-cases imply different requirements
from different users. For instance, academics working on the NC theory would want to be able to
get access to specific intermediate results that are not needed, and even could be detrimental,
when conceiving the networking architecture by design space exploration. On the other hand,
proving the correctness of the WCTT results in the certification process might require other
kinds of intermediate results to be available.
However, the various functionalities and facets of the software are all based on the solid
mathematical foundation that is provided by the NC theory (see section 2). Also, the tool is up-to-
date in the sense that, to the best of our knowledge, it implements the latest NC theoretical
results. For instance, the tool is able to deal with the so-called ultimately pseudo-periodic (UPP)
work arrival functions [Bouillard08], which significantly increases the modeling power and the
accuracy of the WCTT results with regard to previous implementations (see Section 4). Being as
accurate as possible in the WCTT results is indeed a primary objective of the tool because it has
an immediate impact on the architectural complexity and its costs, and thus on the industrial
competitively of the developed solutions.
Finally, the tool has been developed with usability in mind. In particular, it includes a graphical
user interface (see figures 6 and 7) which allows to set and modify the configurations under
study, visualize the results and compare among alternative design choices.

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 4/15

2 Mathemat ica l foundat ions o f WCTT : the Network Ca lcu lus

Network Calculus is a mathematical theory designed to compute upper bounds on communication
delays and memory usage in networks. It had been successfully used to certify the Airbus A380
AFDX backbone [Grieu04,Frances06]. Here is only a short overview of the method and its benefits
in the context of critical embedded systems.

2.1 Network Calculus: history and a recap

The aim is here to provide a general overview of NC, without too many technicalities. The
interested reader can refer to [LeBoudec01, Chang00, Boyer10a].
The Network Calculus (NC) theory has been conceived to compute worst case performances of
networks, i.e. worst delays and worst buffers usage (also known as backlog). The first studies
[Cruz91a,Cruz91b] were a generalization of common scheduling theories, considering the general
notion of arrival curve to describe the inputs of a system, instead of the classical “periodic task”
model. But the main originality of network calculus, developed from the middle to the end of the
90's, is the parallel made with the filtering theory and the (min,+) algebra [Baccelli92]. Today,
network calculus [LeBoudec01,Chang01] is a theory supported by a formal mathematical
framework: the (min,+) algebra.
In few words, network calculus handles two kinds of system objects: flows and servers. A flow is
modeled by its cumulative function R(t), which represents the total amount of data produced by
the flow from time 0 up to time t. A server S transforms an input flow R into an output flow R',
with R≥R', meaning that the departure time of any bit occurs after its arrival. Such a server does

not create any data, neither looses any.
The backlog at time t is b(t)=R(t)-R'(t), that is the amount of data that has entered into the server

and not gone away yet. The delay at time t is d(t)=inf{ τ | R'(t) ≤ R(t+ τ) } as presented in Figure 1 .

The worst backlog and the worst delay can be defined as the maximum backlog and delay for all t.
There are formally known as vertical and horizontal deviations, v(R,R') and h(R,R').

But the real flows R and R' are unknown at design time (they may depend on external events,
jitters, varying execution times, etc.). So, network calculus has to compute the bounds based on
some safe traffic and service assumptions. In particular it is said that a flow R has an arrival

curve α(t) if and only if ∀ t,w≥0, R(t+w)-R(t)≤ α(w), meaning that, on any interval of duration w, at

most α(w) data are emitted by flow R . The link between (min,+) algebra and network calculus

appears when noticing that this condition is equivalent to R ≤ α*R, where * denotes the

convolution in the (min,+) algebra. In a similar manner, a server offers a simple service of curve β

iff, for all input flow R, the output flow R' satisfies R' ≥ R * β.

Figure 1: Horizontal and vertical deviation

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 5/15

With these hypotheses, the network calculus ensures that the worst delay experienced by the

flows R in the server S is bounded by h(α , β), while the worst backlog is bounded by v(α , β).
Moreover, the computation can be propagated, because the theory also gives an arrival curve for

the outputs flow, R': α '= α ÷ β, where ÷ denotes the (min,+) deconvolution.

A formal mathematical background also permits to benefit from the general properties of
mathematical operators, like commutativity, associativity, monotony, etc. And these properties

are of practical interest. For example, if α is an arrival curve for a flow R, any function α ' ≥ α also

is an arrival curve for the flow R, and the symmetric holds for service curve.

A famous result of network calculus, known as “pay burst only once”, comes from this
mathematical framework: if a flow R goes through a sequence of two servers, S and S' (cf

Illustration 2), providing respectively service curves β and β' , then, the system is identical to a

flow crossing a single server S;S' (where ; is a composition operator) offering a service curve

β * β' .
This allows to compute an end-to-end delay, h(α , β * β') smaller than the sum of the local delays.

An interpretation of this result is the following: when considering a bursty flow, at a given instant,
the burst can be either in S, either in S', or partially in S and partially in S' , but not in both S and
S' . Then, the worst delay for S occurs when the burst is in S, the same holds for S', but the global
worst case is not the sum of individual worst cases. But going from an intuition to a formal result
can be a difficult task. Here, the formal framework, ensuring associativity and commutativity,
gives a simple and elegant proof.

R'' ≥ R' * β ' ≥ (R * β) * β' = R * (β * β')
Network calculus also offers results on shared servers, with several policies (First In First Out –
FIFO ; Static Priority – SP ; paquetization ; Weighted Fair Queuing – WFQ). Depending on the
case, network calculus can compute the exact worst case, or only upper (safe) approximations.

2.2 A formal framework providing f lexibi l ity and confidence in the results

One great benefit of the very general framework of network calculus is the built-in ability to model
heterogeneous systems, and make safe approximations. It is not related to some periodic task
model, as often in real-time systems, with subtle differences between models (offsets, periodic,
sporadic, etc). In network calculus, such differences are modeled by different arrivals and/or
service curves, which all belong to the same framework. For example, a sporadic flow with
packets of size l and inter-arrival T can be modeled by a staircase arrival curve. The sum of two
such flows gives a complex periodic arrival curve, with a period equal to the least common
multiple of the flows. But network calculus allows to model it in a less precise manner, with an
affine curve, as depicted in Illustration 3. Because of the monotony of the underlying
mathematical operators, this kind of approximation is safe. Of course, going from staircase
functions to linear ones is just an example. Nevertheless the same principle can be applied to non
trivial classes of curves. However, there is no free lunch, a simple modeling will require less

S

R’

S’

R R’’

S’’

Figure 2: Pay Burst Only Once

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 6/15

computation time but, in general, will also lead to less accurate results. Nevertheless, one can
switch from one model to another, depending on the needs, while staying within the same formal
framework.

Network calculus also makes a very clear distinction between the formal world and the real world.
As presented in Illustration 4, the principle of formal method is the following: considering a real

system Σ, and a property P, the user models the system and creates an object M (the model of Σ)

in a formal theory, and write an expression Φ (often called property also), such that, if the formal

method is able to prove Φ from M, then P holds in Σ. The work of the modeler is to build M and Φ

from Σ and P. The work of the theoretician is to build a formal theory which allows this modeling

and which provides efficient tools to deduce (or refute) Φ from M. Of course, the modeling

(arrows 1,3) must be done carefully, but the deduction (2) is robust. In less formal methods, such
as some real-time scheduling analyses, there often is some implicit assumptions, some
conditions hard to model in the theory, and used in proofs, like “is is clear that the worst case
appears when...” or “since such behavior cannot occur...”, as illustrated by arrow (5). In network
calculus, the formal theory is clear: it is the (min,+) algebra.

Figure 4: Use of formal theories

Figure 3: Safe approximation, from stair-case to linear function

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 7/15

3 Descr ipt ion o f the PEGASE tempora l eva luat ion too l

The complexity of the targeted systems and of the verification methods imposes the usage of a
software tool. But the development of a software tool that implements new mathematical
methods and that satisfies the practicability requirements of an industrial context requires
preliminary exploratory work and proofs of feasibility. Furthermore, researchers need tools that
allow them to evaluate the relevance of the theoretical findings through concrete computations
on industrial case-studies. For this reason, a prototype is being developed during the project and
it is expected to facilitate a rapid transfer of the outcomes of the project to the industry.

3.1 Requirements on the tool

The practicability of such a tool in an industrial context depends on several aspects:
o acceptance by the certification authorities,
o contained computation time to obtain the results,
o domain-specific support for creating system descriptions that helps to avoid modeling

errors,
o ease of understanding and visualization of the analysis and optimization results.

The usefulness of such a tool in an academic context depends on two main aspects:
o models that are as general as possible - even if it is to the detriment of raw performance,
o extendibility that enables exploratory work.

Because of such sometimes conflicting requirements, the tool has been designed in a modular
way, as presented in next subsection. In a certain extent, the PEGASE tool can be seen as a
modular framework, with different sub-tools, having different sub-goals, linked together by a
common theoretical and implementation framework, as presented in the next paragraph.

3.2 Architecture of the tool

Different users will give different importance to different requirements. Thus, the design allows to
have different implementations for different users.

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 8/15

Figure 5: Components of the prototype (UML notations)

As an example, let us consider the MinPlus Library component. Network Calculus uses (min,+)-
algebra operations whose complexity is strongly dependent on the considered class of arrival and
service curves. The more specific the class of curves are (sufficient for industrial applications or
coarse-grained results), the lower the complexity2, while the more general the class of curves (as
needed for research), the higher the complexity. For example, the first works on NC [Cruz91a]

were only using affine curves (like shown in Figure 3), where * and ÷ can be computed in

constant time and less than ten lines of code. A very general class of piece-wise affine functions,
called Ultimately Pseudo Periodic or UPP for short, has been studied in [Bouillard08]. These UPP
functions require complex and computationally intensive algorithms to work with, while the simple
concave piece-wise affine functions (that belong to the ICC class, for Increasing Convex or
Concave) involve only linear algorithms (see [Boyer08]).
In PEGASE, both ICC and UPP have been developed; using either floating points or exact rational
numbers, and the user is free to choose the MinPlus Library component that best suits its needs.
Table1 gives, for each module, the lines of code (LOC), the complexity (measured by the
cyclomatic complexity), the number of methods and the ratio complexity/methods.

Module #Lines of code Complexity

(Cyclomatic)

#Methods Cplx/#Methods

Fraction 816 268 73 3.67

Double 84 32 24 1.33

ICC 1292 318 74 4.3

UPP 3416 719 106 6.8

Table 1: Size and complexity of the implementation. The code shared by all modules is not
indicated here: it represents 2062 lines of code, 101 methods for a complexity equal to 504.

Cyclomatic complexity is a software metric that indicates the complexity of a program by
measuring the number of paths in the source code.

At the time of writing, all modules are operational and their core features have been validated.
The features needed for the most advanced use-cases are currently conceived and implemented.

2 Complexity should be understood here with two meanings: computational cost and implementation cost. A simple
class of functions can have low computational cost (l inear) and be a good choice in a coarse design phase, while, at a
later stage of design, a more general class leading to more precise results can be a better choice.

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 9/15

For instance, we are developing a design space exploration module that will help the OEM to
optimize the design choices regarding the topology, routing and allocation of the functions.

3.3 The Network Editor

The code of the GUI is mainly not hand-written but generated from a high-level specification in
UML with RTaW-Generator (see [RTaW08]). This was especially useful at the beginning of the
development process, when the interactions with the users lead to frequent modifications.
Another interest is that the code quality is ensured by the generator, which has been validated on
several large projects.

Figure 6: Topology of the AFDX network. The gray boxes are the switches while the end
systems are the white boxes. The names of the virtual links are shown as labels of the
physical links.

The GUI gives the user access to the whole system description, in order to visualize or set
parameter values concerning the topology of the networks, the characteristics of the switches
and virtual links, etc. As explained in §3.2, not all users will need to run the computations in the
same manner, therefore the desired tradeoff between speed and accuracy can be chosen
through the GUI. The tool can not only be used in an interactive manner, computations can be run
through scripts.

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 10/15

Figure 7: results panel showing the computed Worst-Case Traversal Times, where red
means that the time constraint cannot be guaranteed for a given virtual link.

3.4 Tool validat ion

Java has been chosen as programming language for its lower risk for programming errors
Furthermore continuous integration with frequent releases is performed in order to get rapid
feedback from the academic and industrial partners. Given the safety requirements of the
application domain, a particular effort is put on the validation of the code:

o Numerous unit tests of the different components of the tools with the mandatory
objective of 100% of source code coverage,

o Static analysis of the source code with the tool SONAR, with the objective to remove all
identified warnings,

o Extensive automated comparison tests with the Network Calculus tool NC-maude
[Boyer10b].

4 Per fo rmance eva luat i on

4.1 System setup

The performances of the algorithms and their implementation in the tool have been evaluated on
an industrial size example provided by Thales Avionics. The following table summarizes the main
characteristics of the modeled communication system.

Entities Number

End Systems 104

Routers 8

Virtual Links 974

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 11/15

Latency constraints 6501

As can be seen in the following table, each Virtual Link (VL) has on average 6 destination end
systems. This explains the 6501 latency constraints shown in the first table, which means also
that 6501 WCTT bounds need to be computed.

 Virtual Link

destinations

BAG (minimum

interarrival

time)

Maximal

Packet Size

Traversed

Routers

Latency

Constraints

minimum 1.0 2 ms 100 bytes 1 1000 µs

average 6.6 60 ms 380 bytes 1.3 10040 µs

maximum 84.0 128 ms 1500 bytes 4 30000 µs

4.2 WCTT evaluation algorithms and their running times

Bounds on WCTT have been computed with two different kinds of initial arrival curves, with two
different numerical types and with two different function types. The following table summarizes
the advantages and disadvantages of these analysis options.

 Advantages Disadvantages

Number

type

Floating

point

Faster execution of min-plus
operations.

Rounding errors and
incompatibility with UPP function
class.

Fraction No rounding errors and
compatibility with all function
classes.

Slower execution of min-plus
operations.

Function

class

ICC Implementation of min-plus
operations are less complex and
thus their execution is faster

Tighter stair case arrival
functions cannot be represented
and thus bounds on WCTTs are
larger.

UPP Tighter stair case arrival functions
can be represented and thus
bounds on WCTTs are tighter.

Implementation of min-plus
operation much more complex
and thus their execution is
slower.

Initial

arrival

function

kind

Token

bucket

Simple structure which is
compatible with all function
classes.

Looser arrival function which
leads to larger bounds on WCTT.

Stair

case

Complex structure that is not
compatible with all function
classes. Can only be handled with
UPP functions.

Tighter arrival function which
leads to tighter bounds on WCTT.

The following table shows the duration of the WCTT calculations for all possible configurations
combinations3.

3 Experimentations have been run on a 2.5Ghz Intel processor running under a 64 bits- Linux, with
the Sun/Oracle 1.6.0_24 java machine.

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 12/15

Configuration

number

Initial arrival

function

Number type Function class Duration of WCTT

computations

1 Token bucket Double ICC 2 s

2 Token bucket Fraction ICC 11 s

3 Token bucket Fraction UPP 19 s

4 Stair case Fraction UPP 33 mn

From the computation time point of view, as expected, the calculations are much faster:

o if based on floating points instead of fractions,
o if based on the ICC function class instead of the UPP function class,
o if based on token-bucket arrival-functions instead of stair-case arrival functions.

4.3 Results accuracy

The tightness of the calculated bounds behaves in principle exactly in the opposite of the running
time, but differences in accuracy might be in some cases negligible or null. For instance,
changing only the numbers representation from fraction to double, while keeping the ICC function
class and the token-bucket arrival function, lead to negligible differences (below µs level) in the
case of the studied real-world sample system (configurations 1 and 2). As expected, changing
only the function class (ICC or UPP), while keeping the initial arrival function and the number
representation identical leads to identical results (configurations 2 and 3).

However, changing the initial arrival function to stair-case, produces significantly tighter bounds,
with improvements ranging from 0% up to 20%, and an average gain equal to 6%. As can be seen
in Figure 8 where the computed WCTT bounds of the virtual links are sorted in increasing order
their values, improvements are basically proportional to the bounds.

0

5000

10000

15000

20000

25000

TokenBucket

StairCase

Virtual links sorted by increasing WCTT bounds (TockenBucket)

U
p

p
e

r
b

o
u
n
d

s
 o

n
 W

C
T

T

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 13/15

Figure 8: Worst-Case network Traversal Times obtained with Tocken Bucket and Stair Case modeling of the
input traffic.

The priority of the VLs is one the factors that influences the gain achieved with the stair case
input traffic model. On Figures 6 and 7, one observes that the lower the priority, the higher the
improvement brought by stair-case: 0.38% of average improvement for the highest priority VLs
versus 12.5% for the lowest priority VLs.

The same analysis can be done for the length of the VL path (i.e. the number of switches between
sender and receiver). As can be seen on Figures 8 and 9, the conclusion is that the longer the
path, the higher the improvement: 5.7% of average improvement for paths of length 1 versus
7.3% for paths of length 3.

0

200

400

600

800

1000

1200

1400

1600

1800

TokenBucket

StairCase

Virtual links sorted by increasing WCTT bounds (TockenBucket)

U
p

p
e

r
b

o
u
n
d

s
 o

n
 W

C
T

T

Figure 9: WCTT of higher priority VLs

0

5000

10000

15000

20000

25000

TokenBucket

StairCase

Virtual links sorted by increasing WCTT bounds (TockenBucket)

U
p

p
e

r
b

o
u
n
d

s
 o

n
 W

C
T

T

Figure 10: WCTT of lower priority VLs

0

5000

10000

15000

20000

25000

TokenBucket

StairCase

Virtual links sorted by increasing WCTT bounds (TockenBucket)

U
p

p
e

r
b

o
u
n

d
s

 o
n

 W
C

T
T

Figure 11: WCTT of VLs crossing 1 switch

0

5000

10000

15000

20000

25000

TokenBucket

StairCase

Virtual links sorted by increasing WCTT bounds (TockenBucket)

U
p

p
e

r
b

o
u
n
d

s
 o

n
 W

C
T

T

Figure 12: WCTT of VLs crossing 3 switches

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 14/15

5 Conc lus ions and fu ture work

For the last 10 years, Network Calculus has proven to be a powerful formalism that is well suited
to provide guarantees on the worst-case performances of large critical embedded systems, such
as airplanes. Thanks to recent theoretical and algorithmic improvements, such as the ones that
are being obtained in the Pegase project, it becomes possible to achieve significant gains in
accuracy, reducing thus the over-provisioning of resources, and provide better support for design
space exploration techniques.
One of the main objectives of the Pegase project is to come up with a practical and efficient
software tool suited for both research and industrial use at different steps of the design. The
features that allow the basic use-cases of the tool have been implemented and successfully
tested on realistic case-studies. Our ongoing work is to implement more complex use-cases,
related to design optimization, and benchmark our algorithms against other techniques such as
the trajectory based approach [Martin04]. Also, we believe there are other classes of functions
that may have the necessary power for modeling avionics systems without the complexity of the
most general UPP class.

6 Re ferences

[AFDX09] AEEC, “Arinc 664p7-1aircraft data network, part 7, avionics full-duplex switched
Ethernet network”. Airlines Electronic Engineering Committee, September 2009.
[Baccelli92] Francois Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat,
“Synchronization and Linearity: An Algebra for Discrete Event Systems”, volume ISBN; 978-
0471936091. John Wiley and Son, 1992. http://cermics.enpc.fr/ cohen-g//SED/book-
online.html.
[Bouillard08], Anne Bouillard, Éric Thierry, “An Algorithmic Toolbox for Network Calculus”,
Journal of Discrete Event Dynamic Systems, Vol. 18(1), pages 3-49, 2008
[Boyer08] Marc Boyer and Christian Fraboul. Tightening end to end delay upper bound for AFDX
network with rate latency FCFS servers using network calculus. In Proc. of the 7th IEEE Int.
Workshop on Factory Communication Systems Communication in Automation (WFCS 2008),
pages 11-20. IEEE industrial Electrony Society, May 21-23 2008.
[Boyer10a] Marc Boyer. Half-modeling of shaping in FIFO net with network calculus. In Proc. of
the 18th International Conference on Real-Time and Network Systems (RTNS 2010) , Toulouse,
France, November 4-5 2010.
[Boyer10b] Marc Boyer. NC-maude: a rewriting tool to play with network calculus. In T. Margaria
and B. Stepen, editors, Proceedings of the 4th International Symposium On Leveraging
Applications of Formal Methods, Verication and Validation (ISoLA 2010) , LNCS. Springer, 2010.
[Chang00] Cheng-Shang Chang. Performance Guarantees in communication networks.
Telecommunication Networks and Computer Systems. Springer, 2000.
[Cruz91a] Rene L. Cruz. A calculus for network delay, part I: Network elements in isolation. IEEE
Transactions on information theory ,37(1):114-131, January 1991.
[Cruz91b] Rene L. Cruz. A calculus for network delay, part II: Network analysis. IEEE Transactions
on information theory , 37(1):132-141, January 1991.
[Frances06] Fabrice Frances, Christian Fraboul, and Jerôme Grieu. Using network calculus to
optimize AFDX network. In Proceeding of the 3thd European congress on Embedded Real Time
Software (ERTS06), Toulouse, January 2006.

©2011 REALTIME-AT-WORK / ONERA / THALES AVIONICS

 15/15

[Grieu04] Jerôme Grieu. Analyse et évaluation de techniques de commutation Ethernet pour
l'interconnexion des systèmes avioniques . PhD thesis, Institut National Polytechnique de Toulouse
(INPT), Toulouse, Juin 2004.
[LeBoudec01] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus , volume 2050 of
LNCS, Springer Verlag, 2001.
[Martin04] Steven Martin, Pascale Minet, Laurent George, “The trajectory approach for the end-
to-end response times with non-preemptive FP/EDF*”, Proceedings of the Int. Conf. on Software
Engineering Research and Applications (SERA’04). Volume 3647 of LNCS., Springer, 2004.
[Pegase10] M. Boyer, PEGASE project home page. http://sites.onera.fr/pegase, 2010.
[RTaW10] RealTime-at-Work, “Minplus-Console: a (Min,+) algebra interpreter for Network
Calculus”, available for downloadable at url: http://www.realtimeatwork.com/downloads/.
[RTaW08] RealTime-at-Work, “RTaW-Generator: code and GUI generation from UML
specifications”, see: http://www.realtimeatwork.com/software/rtaw-generator/, 2008.
[SpW08] ECSS, “Spacewire – links, nodes, routers and networks”, ECSS-E-ST-50-12C, European
cooperation for space standardization (ECSS), ESA-ESTEC, Requirements & standards division,
July 2008.

